Lecture 6: The Cartesian Plane Revisited

6.1 Points as vectors

Definition If $A = (x_1, y_1)$, $B = (x_2, y_2)$, and $\alpha \in \mathbb{R}$, then

$$A + B = (x_1 + x_2, y_1 + y_2),$$

$$\alpha A = (\alpha x_1, \alpha x_2),$$

$$A - B = A + (-1)B = (x_1 - x_2, y_1 - y_2),$$

$$\langle A, B \rangle = x_1 x_2 + y_1 y_2,$$

and

$$||A|| = \sqrt{\langle A, A \rangle}.$$

Given any $A, B \in \mathbb{R}^2$, let

$$L_{AB} = \{P : P = A + t(B - A), t \in \mathbb{R}\}.$$

Then, in the Cartesian Plane $\{\mathbb{R}^2, \mathcal{L}_E\}, L_{AB} = \overleftarrow{AB}$ and, if we let

$$\mathcal{L} = \{ L_{AB} : A, B \in \mathbb{R}^2 \},\$$

we have

$$\mathcal{L}_E = \mathcal{L}$$

Recall: If $A, B \in \mathbb{R}^2$, then $d_E(A, B) = ||A - B||$.

Theorem Given $\ell = L_{AB}$ in the Cartesian Plane, the function $f : \ell \to \mathbb{R}$ defined at P = A + t(B - A) by

$$f(P) = t \|B - A\|$$

is a ruler for ℓ in $\{\mathbb{R}^2, \mathcal{L}_E, d_E\}$.

Proof Note that for any P = A + t(B - A) and Q = A + s(B - A), $t, s \in \mathbb{R}$, on ℓ , we have

$$d_E(P,Q) = ||A - B|| = ||t(B - A) - s(B - A)|| = ||B - A|||t - s|.$$

Hence

$$|f(P) - f(Q)|| = |t||B - A|| - s||B - A||| = ||B - A|||t - s| = d_E(P, Q).$$

Thus f is a ruler for ℓ .

6.2 Two inequalities

Cauchy-Schwarz Inequality If $A, B \in \mathbb{R}^2$, then

 $|\langle A,B\rangle|\leq \|A\|\|B\|.$

Moreover, equality holds if and only if either B = (0,0) or A = tB for some $t \in \mathbb{R}$.

Proof If B = (0, 0), then

$$\langle A,B\rangle|=0=\|A\|\|B\|.$$

Suppose $B \neq (0,0)$. Define $g : \mathbb{R} \to \mathbb{R}$ by

$$g(t) = ||A - tB||^2.$$

Then

$$g(t) = \langle A - tB, A - tB \rangle = \langle A, A \rangle - 2t \langle A, B \rangle + t^2 \langle B, B \rangle$$

so g(t) is a quadratic polynomial. Since $g(t) \ge 0$ for all t, it follows that g has at most one real zero. Hence, using the quadratic formula, we have

$$4\langle A, B \rangle^2 - 4\langle B, B \rangle \langle A, A \rangle \le 0.$$

Hence

$$|\langle A, B \rangle| \le \sqrt{\langle A, A \rangle \langle B, B \rangle} = ||A|| ||B||.$$

Finally, note that

$$4\langle A, B \rangle^2 - 4\langle B, B \rangle \langle A, A \rangle = 0$$

if and only if g(t) has a zero. In that case, there exists a $t \in \mathbb{R}$ such that

$$0 = g(t) = ||A - tB||^2,$$

which is true if and only if A = tB.

Definition Suppose d is a distance function on a set S. We say d satisfies the triangle inequality if, for all $A, B, C \in S$,

$$d(A,C) \le d(A,B) + d(B,C).$$

Theorem The Euclidean distance function, d_E , satisfies the triangle inequality.

Proof If $P, Q \in \mathbb{R}^2$, we have

$$\begin{split} \|P+Q\|^2 &= \langle P+Q, P+Q \rangle \\ &= \langle P, P \rangle^2 + 2 \langle P, Q \rangle + \langle Q, Q \rangle^2 \\ &= \|P\| + 2 \langle P, Q \rangle + \|Q\| \\ &\leq \|P\| + 2|\langle P, Q \rangle| + \|Q\| \\ &\leq \|P\| + 2\|P\|\|Q\| + \|Q\| \\ &\leq \|P\| + 2\|P\|\|Q\| + \|Q\| \\ &= (\|P\| + \|Q\|)^2, \end{split}$$

from which it follows that

$$||P + Q|| \le ||P|| + ||Q||.$$

If $A, B, C \in \mathbb{R}^2$, let P = A - B and Q = B - C. Then

$$d_E(A,C) = \|A - C\| = \|(A - B) + (B - C)\| \le \|A - B\| + \|B - C\| = d_E(A,B) + d_E(B,C).$$