Lecture 6: The Cartesian Plane Revisited

6.1 Points as vectors

Definition If $A=\left(x_{1}, y_{1}\right), B=\left(x_{2}, y_{2}\right)$, and $\alpha \in \mathbb{R}$, then

$$
\begin{gathered}
A+B=\left(x_{1}+x_{2}, y_{1}+y_{2}\right), \\
\alpha A=\left(\alpha x_{1}, \alpha x_{2}\right), \\
A-B=A+(-1) B=\left(x_{1}-x_{2}, y_{1}-y_{2}\right), \\
\langle A, B\rangle=x_{1} x_{2}+y_{1} y_{2},
\end{gathered}
$$

and

$$
\|A\|=\sqrt{\langle A, A\rangle}
$$

Given any $A, B \in \mathbb{R}^{2}$, let

$$
L_{A B}=\{P: P=A+t(B-A), t \in \mathbb{R}\} .
$$

Then, in the Cartesian Plane $\left\{\mathbb{R}^{2}, \mathcal{L}_{E}\right\}, L_{A B}=\overleftrightarrow{A B}$ and, if we let

$$
\mathcal{L}=\left\{L_{A B}: A, B \in \mathbb{R}^{2}\right\}
$$

we have

$$
\mathcal{L}_{E}=\mathcal{L} .
$$

Recall: If $A, B \in \mathbb{R}^{2}$, then $d_{E}(A, B)=\|A-B\|$.
Theorem Given $\ell=L_{A B}$ in the Cartesian Plane, the function $f: \ell \rightarrow \mathbb{R}$ defined at $P=A+t(B-A)$ by

$$
f(P)=t\|B-A\|
$$

is a ruler for ℓ in $\left\{\mathbb{R}^{2}, \mathcal{L}_{E}, d_{E}\right\}$.
Proof Note that for any $P=A+t(B-A)$ and $Q=A+s(B-A), t, s \in \mathbb{R}$, on ℓ, we have

$$
d_{E}(P, Q)=\|A-B\|=\|t(B-A)-s(B-A)\|=\|B-A\||t-s|
$$

Hence

$$
\left|f(P)-f(Q)\|=|t\|B-A\|-s\|B-A\||=\| B-A \||t-s|=d_{E}(P, Q)\right.
$$

Thus f is a ruler for ℓ.

6.2 Two inequalities

Cauchy-Schwarz Inequality If $A, B \in \mathbb{R}^{2}$, then

$$
|\langle A, B\rangle| \leq\|A\|\|B\| .
$$

Moreover, equality holds if and only if either $B=(0,0)$ or $A=t B$ for some $t \in \mathbb{R}$.
Proof If $B=(0,0)$, then

$$
|\langle A, B\rangle|=0=\|A\|\|B\| .
$$

Suppose $B \neq(0,0)$. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g(t)=\|A-t B\|^{2}
$$

Then

$$
g(t)=\langle A-t B, A-t B\rangle=\langle A, A\rangle-2 t\langle A, B\rangle+t^{2}\langle B, B\rangle,
$$

so $g(t)$ is a quadratic polynomial. Since $g(t) \geq 0$ for all t, it follows that g has at most one real zero. Hence, using the quadratic formula, we have

$$
4\langle A, B\rangle^{2}-4\langle B, B\rangle\langle A, A\rangle \leq 0
$$

Hence

$$
|\langle A, B\rangle| \leq \sqrt{\langle A, A\rangle\langle B, B\rangle}=\|A\|\|B\| .
$$

Finally, note that

$$
4\langle A, B\rangle^{2}-4\langle B, B\rangle\langle A, A\rangle=0
$$

if and only if $g(t)$ has a zero. In that case, there exists a $t \in \mathbb{R}$ such that

$$
0=g(t)=\|A-t B\|^{2}
$$

which is true if and only if $A=t B$.
Definition Suppose d is a distance function on a set \mathcal{S}. We say d satisfies the triangle inequality if, for all $A, B, C \in \mathcal{S}$,

$$
d(A, C) \leq d(A, B)+d(B, C)
$$

Theorem The Euclidean distance function, d_{E}, satisfies the triangle inequality.
Proof If $P, Q \in \mathbb{R}^{2}$, we have

$$
\begin{aligned}
\|P+Q\|^{2} & =\langle P+Q, P+Q\rangle \\
& =\langle P, P\rangle^{2}+2\langle P, Q\rangle+\langle Q, Q\rangle^{2} \\
& =\|P\|+2\langle P, Q\rangle+\|Q\| \\
& \leq\|P\|+2|\langle P, Q\rangle|+\|Q\| \\
& \leq\|P\|+2\|P\|\|Q\|+\|Q\| \\
& =(\|P\|+\|Q\|)^{2},
\end{aligned}
$$

from which it follows that

$$
\|P+Q\| \leq\|P\|+\|Q\| .
$$

If $A, B, C \in \mathbb{R}^{2}$, let $P=A-B$ and $Q=B-C$. Then

$$
d_{E}(A, C)=\|A-C\|=\|(A-B)+(B-C)\| \leq\|A-B\|+\|B-C\|=d_{E}(A, B)+d_{E}(B, C) .
$$

