Lecture 5: Coordinate Systems

5.1 Special rulers

Theorem If f is a ruler for a line ℓ in a metric geometry $\{\mathcal{P}, \mathcal{L}, d\}$, then (1) $g: \ell \rightarrow \mathbb{R}$ defined by $g(P)=-f(P)$ and (2) $h: \ell \rightarrow \mathbb{R}$ defined by $h(P)=f(P)-a$, where $a \in \mathbb{R}$, are rulers for ℓ.

Proof If $t \in \mathbb{R}$, then there exists $P, Q \in \ell$ such that $f(P)=-t$ and $f(Q)=t+a$. Then $g(P)=-f(P)=t$ and $h(Q)=f(P)-a=t$, so g and h are both surjective. Moreover, for any $P, Q \in \ell$,

$$
|g(P)-g(Q)|=|-f(P)+f(Q)|=|f(P)-f(Q)|=d(P, Q)
$$

and

$$
|h(P)-h(Q)|=|(f(P)-a)-(f(Q)-a)|=|f(P)-f(Q)|=d(P, Q)
$$

Thus g and h are rulers for ℓ.
Ruler Placement Theorem If A and B are points on a line ℓ of a metric geometry $\{\mathcal{P}, \mathcal{L}, d\}$, then there exists a ruler g on ℓ for which $g(A)=0$ and $g(B)>0$.

Proof Let $f: \ell \rightarrow \mathbb{R}$ be a ruler for ℓ. Let $a=f(A)$ and define $h: \ell \rightarrow \mathbb{R}$ by $h(P)=$ $f(P)-a$. Then $h(A)=0$. If $h(B)>0$, let $g=h$; if $h(B)<0$ define $g: \ell \rightarrow \mathbb{R}$ by $g(P)=-f(P)$ for all $P \in \mathcal{P}$. Then g is a ruler for ℓ with $g(A)=0$ and $g(B)>0$.

Definition If A and B are points in an incidence geometry $\{\mathcal{P}, \mathcal{L}, d\}, \ell=\overleftrightarrow{A B}$, and f is a ruler for ℓ with $f(A)=0$ and $f(B)>0$, then we call f a coordinate system with A as origin and B positive.

Theorem Suppose $f: \ell \rightarrow \mathbb{R}$ and $g: \ell \rightarrow \mathbb{R}$ are rulers for a line ℓ in a metric geometry $\{\mathcal{P}, \mathcal{L}, d\}$. Then there exists $a \in \mathbb{R}$ such that either

$$
g(P)=f(P)-a
$$

or

$$
g(P)=-(f(P)-a)
$$

for all $P \in \ell$.
Proof Let T be the unique point on ℓ with $g(T)=0$. Let $a=f(T)$. Then for any $P \in \ell$,

$$
|g(P)|=|g(P)-g(T)|=d(P, T)=|f(P)-f(T)|=|f(P)-a| .
$$

Hence either

$$
g(P)=f(P)-a
$$

or

$$
g(P)=-(f(P)-a) .
$$

Now suppose there exists distinct points $P \neq T$ and $Q \neq T$ for which $g(P)=f(P)-a$ and $g(Q)=-(f(Q)-a)$. Then

$$
d(P, Q)=|g(P)-g(Q)|=|(f(P)-a)+(f(Q)-a)|=|f(P)+f(Q)-2 a|
$$

Hence

$$
|f(P)-f(Q)|=d(P, Q)=|f(P)+f(Q)-2 a|
$$

and so either

$$
f(P)-f(Q)=f(P)+f(Q)-2 a,
$$

in which case $f(Q)=a$, or

$$
f(P)-f(Q)=-f(P)-f(Q)+2 a,
$$

in which case $f(P)=a$. Either of these conclusions contradict the assumption that f is injective. Hence we must have that either

$$
g(P)=f(P)-a
$$

for all $P \in \ell$ or

$$
g(P)=-(f(P)-a)
$$

for all $P \in \ell$.

