Lecture 4: Metric Geometry

4.1 Distance

Definition A distance function on a set \mathcal{S} is a function $d: \mathcal{S} \times \mathcal{S} \rightarrow \mathbb{R}$ such that for all $P, Q \in \mathcal{S},(1) d(P, Q) \geq 0,(2) d(P, Q)=0$ if and only if $P=Q$, and (3) $d(P, Q)=d(Q, P)$.

Example Define $d_{E}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ as follows: if $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$, then

$$
d_{E}(P, Q)=\sqrt{\left.\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\right)} .
$$

Then $d_{E}(P, Q) \geq 0$ for all $P, Q \in \mathbb{R}^{2}$. If $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right)$, and $d_{E}(P, Q)=0$, then we must have

$$
\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}=0
$$

from which it follows that

$$
\left(x_{1}-x_{2}\right)^{2}=0
$$

and

$$
\left(y_{1}-y_{2}\right)^{2}=0 .
$$

Hence $x_{1}=x_{2}$ and $y_{1}=y_{2}$, that is, $P=Q$. Also, if $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$, then

$$
d_{E}(P, Q)=\sqrt{\left.\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\right)}=\sqrt{\left.\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right)}=d_{E}(Q, P) .
$$

Thus d_{E} is a distance function, which we call the Euclidean distance function.
Example Define $d_{T}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ as follows: if $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$, then

$$
d_{T}(P, Q)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right| .
$$

Then $d_{E}(P, Q) \geq 0$ for all $P, Q \in \mathbb{R}^{2}$. If $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right)$, and $d_{E}(P, Q)=0$, then we must have

$$
\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|=0,
$$

from which it follows that

$$
\left|x_{1}-x_{2}\right|=0
$$

and

$$
\left|y_{1}-y_{2}\right|=0 .
$$

Hence $x_{1}=x_{2}$ and $y_{1}=y_{2}$, that is, $P=Q$. Also, if $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$, then

$$
d_{T}(P, Q)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|=d_{T}(Q, P) .
$$

Thus d_{T} is a distance function, which we call the taxicab distance function.

4.2 Rulers

Definition Suppose d is a distance function on a set \mathcal{P} and $\{\mathcal{P}, \mathcal{L}\}$ is an incidence geometry. Given a line $\ell \in \mathcal{L}$, we call a function $f: \ell \rightarrow \mathbb{R}$ a ruler, or coordinate system, for ℓ if (1) f is a bijection and (2) for every pair of points $P, Q \in \ell$,

$$
d(P, Q)=|f(P)-f(Q)|
$$

We call $f(P)$ the coordinate of P with respect to f.
Definition Suppose d is a distance function on $\mathcal{P},\{\mathcal{P}, \mathcal{L}\}$ is an incidence geometry, and every line $\ell \in \mathcal{L}$ has a ruler. We say $\{\mathcal{P}, \mathcal{L}\}$ satisfies the Ruler Postulate and we call $\{\mathcal{P}, \mathcal{L}, d\}$ a metric geometry.

Note: Suppose $\{\mathcal{P}, \mathcal{L}\}$ is an incidence geometry, d is a distance function on $\mathcal{P}, \ell \in \mathcal{L}$, $f: \ell \rightarrow \mathbb{R}$ is surjective, and for every $P, Q \in \mathcal{P}$,

$$
d(P, Q)=|f(P)-f(Q)|
$$

Then if $P, Q \in \mathcal{P}$ with $f(P)=f(Q)$,

$$
d(P, Q)=|f(P)-f(Q)|=0
$$

from which it follows that $P=Q$ and f is injective (and hence a bijection).
Example Let $\ell=L_{a}$ be a vertical line in the Cartesian Plane $\left\{\mathbb{R}^{2}, \mathcal{L}_{E}\right\}$. If $P \in \ell$, then $P=(a, y)$ for some y. Define $f: \ell \rightarrow \mathbb{R}$ by

$$
f(P)=f((a, y))=y
$$

Then for any $P=\left(a, y_{1}\right)$ and $Q=\left(a, y_{2}\right)$ on ℓ,

$$
|f(P)-f(Q)|=\left|y_{1}-y_{2}\right|=d_{E}(P, Q)
$$

Since f is a bijection, it follows that f is a ruler for ℓ.
Now let $\ell=L_{m, b}$ be a non-vertical line in $\left\{\mathbb{R}^{2}, \mathcal{L}_{E}\right\}$. Note that if

$$
P=\left(x_{1}, y_{1}\right)=\left(x_{1}, m x_{2}+b\right)
$$

and

$$
Q=\left(x_{2}, y_{2}\right)=\left(x_{2}, m x_{2}+b\right)
$$

are points on ℓ, then

$$
d_{E}(P, Q)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+m^{2}\left(x_{1}-x_{2}\right)^{2}}=\sqrt{1+m^{2}}\left|x_{1}-x_{2}\right|
$$

Hence it would be reasonable to define $f: \ell \rightarrow \mathbb{R}$ at $P=(x, y)$ by

$$
f(P)=f((x, y))=x \sqrt{1+m^{2}} .
$$

Then for every $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ on ℓ,

$$
|f(P)-f(Q)|=\left|x_{1} \sqrt{1+m^{2}}-x_{2} \sqrt{1+m^{2}}\right|=\sqrt{1+m^{2}}\left|x_{1}-x_{2}\right|=d(P, Q)
$$

Moreover, f is a surjection since, for any $t \in \mathbb{R}, f(P)=t$ where

$$
P=\left(\frac{t}{\sqrt{1+m^{2}}}, \frac{m t}{\sqrt{1+m^{2}}}+b\right)
$$

Hence f is a ruler for ℓ, and $\mathcal{E}=\left\{\mathbb{R}^{2}, \mathcal{L}_{E}, d_{E}\right\}$ is a metric geometry, which we call the Euclidean Plane.

Example $\mathcal{T}=\left\{\mathbb{R}^{2}, \mathcal{L}_{E}, d_{T}\right\}$ is also a metric geometry, which we call the Taxicab Plane. The verification of this is a homework exercise.

4.3 The hyperbolic plane

We will need the following hyperbolic trigonometric functions:

$$
\begin{gathered}
\sinh (t)=\frac{e^{t}-e^{-t}}{2} \\
\cosh (t)=\frac{e^{t}+e^{-t}}{2} \\
\tanh (t)=\frac{\sinh (t)}{\cosh (t)}=\frac{e^{t}-e^{-t}}{e^{t}+e^{-t}}
\end{gathered}
$$

and

$$
\operatorname{sech}(t)=\frac{1}{\cosh (t)}=\frac{2}{e^{t}+e^{-t}}
$$

Note that

$$
\begin{gathered}
\frac{d}{d t} \sinh (t)=\cosh (t) \\
\frac{d}{d t} \cosh (t)=\sinh (t) \\
\cosh ^{2}(t)-\sinh ^{2}(t)=\frac{1}{4}\left(e^{2 t}+2+e^{-2 t}-e^{2 t}+2-e^{-2 t}\right)=1, \\
\tanh ^{2}(t)+\operatorname{sech}^{2}(t)=1,
\end{gathered}
$$

$$
\frac{d}{d t} \tanh (t)=\frac{\cosh ^{2}(t)-\sinh ^{2}(t)}{\cosh ^{2}(t)}=\operatorname{sech}^{2}(t)
$$

and

$$
\frac{d}{d t} \operatorname{sech}(t)=-(\cosh (t))^{-2} \sinh (t)=-\operatorname{sech}(t) \tanh (t)
$$

Moreover,

$$
\lim _{t \rightarrow-\infty} \tanh (t)=-1
$$

and

$$
\lim _{t \rightarrow \infty} \tanh (t)=1
$$

combined with the fact that $\frac{d}{d t} \tanh (t)>0$ for all t, shows that $f(t)=\tanh (t)$ is a bijection from $(-\infty, \infty)$ to $(-1,1)$. It is also easy to show that $\cosh (t) \geq 1$ for all t, from which it follows that $0<\operatorname{sech}(t) \leq 1$ for all t.

From the above, the function $\varphi(t)=(\tanh (t), \operatorname{sech}(t))$ parametrizes the upper half of the circle $x^{2}+y^{2}=1$, with

$$
\begin{gathered}
\varphi(0)=(0,1) \\
\lim _{t \rightarrow-\infty} \varphi(t)=(-1,0)
\end{gathered}
$$

and

$$
\lim _{t \rightarrow \infty} \varphi(t)=(1,0)
$$

More generally, $\psi(t)=(r \tanh (t)+c, r \operatorname{sech}(t))$ parametrizes the upper half of the circle $(x-c)^{2}+y^{2}=r^{2}$, with

$$
\begin{gathered}
\psi(0)=(c, r) \\
\lim _{t \rightarrow-\infty} \psi(t)=(c-r, 0)
\end{gathered}
$$

and

$$
\lim _{t \rightarrow \infty} \psi(t)=(c+r, 0)
$$

Moreover, $\psi: \mathbb{R} \rightarrow{ }_{c} L_{r}$ is a bijection.
We now know that if $P=(x, y)$ lies on ${ }_{c} L_{r}$, then there exists a unique value of t such $(x, y)=(r \tanh (t)+c, r \operatorname{sech}(t))$. In particular,

$$
x=r \tanh (t)+c,
$$

so

$$
\frac{x-c}{r}=\tanh (t)
$$

Now $s=\tanh (t)$ implies

$$
s=\frac{e^{t}-e^{-t}}{e^{t}+e^{-t}}=\frac{e^{2 t}-1}{e^{2 t}+1}=\frac{u^{2}-1}{u^{2}+1}
$$

where $u=e^{t}$. Hence

$$
(1-s) u^{2}=1+s
$$

so

$$
u=\sqrt{\frac{1+s}{1-s}}
$$

and

$$
t=\frac{1}{2} \log \left(\frac{1+s}{1-s}\right) .
$$

Hence

$$
\begin{aligned}
t & =\frac{1}{2} \log \left(\frac{1+\frac{x-c}{r}}{1-\frac{x-c}{r}}\right) \\
& =\frac{1}{2} \log \left(\frac{r+(x-c)}{r-(x-c)}\right) \\
& \left.=\frac{1}{2} \log \left(\frac{(r+(x-c))(r+(x-c))}{(r-(x-c))(r+(x-c)}\right)\right) \\
& =\frac{1}{2} \log \left(\frac{(r+(x-c))^{2}}{r^{2}-(x-c)^{2}}\right) \\
& =\frac{1}{2} \log \left(\frac{\left(r+(x-c)^{2}\right.}{y^{2}}\right) \\
& =\log \left(\frac{x-c+r}{y}\right)
\end{aligned}
$$

We might then think of defining a distance function d_{H} on the Poincaré Plane $\left\{\mathbb{H}, \mathcal{L}_{H}\right\}$ in such a way that the function $f:{ }_{c} L_{r} \rightarrow \mathbb{R}$ defined for $P=(x, y)$ on ${ }_{c} L_{r}$ by

$$
f(P)=\log \left(\frac{x-c+r}{y}\right)
$$

is a ruler. To do so, we simply define d_{H} for points $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ on ${ }_{c} L_{r}$ by

$$
\begin{aligned}
d_{H}(P, Q)=|f(P)-f(Q)| & =\left|\log \left(\frac{x_{1}-c+r}{y_{1}}\right)-\log \left(\frac{x_{2}-c+r}{y_{2}}\right)\right| \\
& =\left|\log \left(\frac{\frac{x_{1}-c+r}{y_{1}}}{\frac{x_{2}-c+r}{y_{2}}}\right)\right| .
\end{aligned}
$$

However, it remains to define rulers and distances for points on vertical lines. An analogous bijection from $f:{ }_{a} L \rightarrow \mathbb{R}$ is given by, for $P=(a, y)$ on ${ }_{a} L$,

$$
f(P)=\log (y),
$$

from which we obtain, for $P=\left(a, y_{1}\right)$ and $Q=\left(a, y_{2}\right)$ on ${ }_{a} L$,

$$
d_{H}(P, Q)=\left|\log \left(\frac{y_{1}}{y_{2}}\right)\right| .
$$

If we include the case $y_{1}=y_{2}$ in this formula, we then have $d_{H}(P, Q)=0$ if and only if $P=Q$, and d_{H} is indeed a distance function on \mathbb{H}.

From now on, when we refer to the Poincaré Plane we mean the metric geometry $\mathcal{H}=$ $\left\{\mathbb{H}, \mathcal{L}_{H}, d_{H}\right\}$.

Note that the previous example is an example of the following situation: Suppose $\{\mathcal{P}, \mathcal{L}\}$ is an incidence geometry and assume that for each $\ell \in \mathcal{L}$ there exists a bijection $f_{\ell}: \ell \rightarrow \mathbb{R}$. Then we may define a distance function on \mathcal{P} as follows: Given points $P, Q \in \mathcal{P}$, let $d(P, Q)=0$ if $P=Q$ and

$$
d(P, Q)=\left|f_{\ell}(P)-f_{\ell}(Q)\right|
$$

where $\ell=\overleftrightarrow{P Q}$, otherwise. It is not hard to show that $\{\mathcal{P}, \mathcal{L}, d\}$ is a metric geometry. This illustrates that metric geometries can be very strange since the choice of bijections can be arbitrary and need not be consistent between different lines.

