
Lecture 4: Metric Geometry

4.1 Distance

Definition A distance function on a set S is a function d : S × S → R such that for all
P,Q ∈ S, (1) d(P,Q) ≥ 0, (2) d(P,Q) = 0 if and only if P = Q, and (3) d(P,Q) = d(Q,P ).

Example Define dE : R2 × R2 → R as follows: if P = (x1, y1) and Q = (x2, y2), then

dE(P,Q) =
√

(x1 − x2)2 + (y1 − y2)2).

Then dE(P,Q) ≥ 0 for all P,Q ∈ R2. If P = (x1, y1), Q = (x2, y2), and dE(P,Q) = 0,
then we must have

(x1 − x2)2 + (y1 − y2)2 = 0,

from which it follows that
(x1 − x2)2 = 0

and
(y1 − y2)2 = 0.

Hence x1 = x2 and y1 = y2, that is, P = Q. Also, if P = (x1, y1) and Q = (x2, y2), then

dE(P,Q) =
√

(x1 − x2)2 + (y1 − y2)2) =
√

(x2 − x1)2 + (y2 − y1)2) = dE(Q,P ).

Thus dE is a distance function, which we call the Euclidean distance function.

Example Define dT : R2 × R2 → R as follows: if P = (x1, y1) and Q = (x2, y2), then

dT (P,Q) = |x1 − x2|+ |y1 − y2|.

Then dE(P,Q) ≥ 0 for all P,Q ∈ R2. If P = (x1, y1), Q = (x2, y2), and dE(P,Q) = 0,
then we must have

|x1 − x2|+ |y1 − y2| = 0,

from which it follows that
|x1 − x2| = 0

and
|y1 − y2| = 0.

Hence x1 = x2 and y1 = y2, that is, P = Q. Also, if P = (x1, y1) and Q = (x2, y2), then

dT (P,Q) = |x1 − x2|+ |y1 − y2| = |x2 − x1|+ |y2 − y1| = dT (Q,P ).

Thus dT is a distance function, which we call the taxicab distance function.
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4.2 Rulers

Definition Suppose d is a distance function on a set P and {P,L} is an incidence
geometry. Given a line ` ∈ L, we call a function f : ` → R a ruler, or coordinate system,
for ` if (1) f is a bijection and (2) for every pair of points P,Q ∈ `,

d(P,Q) = |f(P )− f(Q)|.

We call f(P ) the coordinate of P with respect to f .

Definition Suppose d is a distance function on P, {P,L} is an incidence geometry, and
every line ` ∈ L has a ruler. We say {P,L} satisfies the Ruler Postulate and we call
{P,L, d} a metric geometry.

Note: Suppose {P,L} is an incidence geometry, d is a distance function on P, ` ∈ L,
f : `→ R is surjective, and for every P,Q ∈ P,

d(P,Q) = |f(P )− f(Q)|.

Then if P,Q ∈ P with f(P ) = f(Q),

d(P,Q) = |f(P )− f(Q)| = 0,

from which it follows that P = Q and f is injective (and hence a bijection).

Example Let ` = La be a vertical line in the Cartesian Plane {R2,LE}. If P ∈ `, then
P = (a, y) for some y. Define f : `→ R by

f(P ) = f((a, y)) = y.

Then for any P = (a, y1) and Q = (a, y2) on `,

|f(P )− f(Q)| = |y1 − y2| = dE(P,Q).

Since f is a bijection, it follows that f is a ruler for `.

Now let ` = Lm,b be a non-vertical line in {R2,LE}. Note that if

P = (x1, y1) = (x1,mx2 + b)

and
Q = (x2, y2) = (x2,mx2 + b)

are points on `, then

dE(P,Q) =
√

(x1 − x2)2 +m2(x1 − x2)2 =
√

1 +m2|x1 − x2|.
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Hence it would be reasonable to define f : `→ R at P = (x, y) by

f(P ) = f((x, y)) = x
√

1 +m2.

Then for every P = (x1, y1) and Q = (x2, y2) on `,

|f(P )− f(Q)| = |x1

√
1 +m2 − x2

√
1 +m2| =

√
1 +m2|x1 − x2| = d(P,Q).

Moreover, f is a surjection since, for any t ∈ R, f(P ) = t where

P =
(

t√
1 +m2

,
mt√

1 +m2
+ b

)
.

Hence f is a ruler for `, and E = {R2,LE , dE} is a metric geometry, which we call the
Euclidean Plane.

Example T = {R2,LE , dT } is also a metric geometry, which we call the Taxicab Plane.
The verification of this is a homework exercise.

4.3 The hyperbolic plane

We will need the following hyperbolic trigonometric functions:

sinh(t) =
et − e−t

2
,

cosh(t) =
et + e−t

2
,

tanh(t) =
sinh(t)
cosh(t)

=
et − e−t

et + e−t
,

and
sech(t) =

1
cosh(t)

=
2

et + e−t
.

Note that
d

dt
sinh(t) = cosh(t),

d

dt
cosh(t) = sinh(t),

cosh2(t)− sinh2(t) =
1
4
(e2t + 2 + e−2t − e2t + 2− e−2t) = 1,

tanh2(t) + sech2(t) = 1,
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d

dt
tanh(t) =

cosh2(t)− sinh2(t)
cosh2(t)

= sech2(t),

and
d

dt
sech(t) = −(cosh(t))−2 sinh(t) = −sech(t) tanh(t).

Moreover,
lim

t→−∞
tanh(t) = −1

and
lim

t→∞
tanh(t) = 1,

combined with the fact that d
dt tanh(t) > 0 for all t, shows that f(t) = tanh(t) is a bijection

from (−∞,∞) to (−1, 1). It is also easy to show that cosh(t) ≥ 1 for all t, from which it
follows that 0 < sech(t) ≤ 1 for all t.

From the above, the function ϕ(t) = (tanh(t), sech(t)) parametrizes the upper half of the
circle x2 + y2 = 1, with

ϕ(0) = (0, 1),

lim
t→−∞

ϕ(t) = (−1, 0),

and
lim

t→∞
ϕ(t) = (1, 0).

More generally, ψ(t) = (r tanh(t) + c, rsech(t)) parametrizes the upper half of the circle
(x− c)2 + y2 = r2, with

ψ(0) = (c, r),

lim
t→−∞

ψ(t) = (c− r, 0),

and
lim

t→∞
ψ(t) = (c+ r, 0).

Moreover, ψ : R → cLr is a bijection.

We now know that if P = (x, y) lies on cLr, then there exists a unique value of t such
(x, y) = (r tanh(t) + c, rsech(t)). In particular,

x = r tanh(t) + c,

so
x− c

r
= tanh(t).

Now s = tanh(t) implies

s =
et − e−t

et + e−t
=
e2t − 1
e2t + 1

=
u2 − 1
u2 + 1

,
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where u = et. Hence
(1− s)u2 = 1 + s,

so

u =

√
1 + s

1− s
,

and

t =
1
2

log
(

1 + s

1− s

)
.

Hence

t =
1
2

log
(

1 + x−c
r

1− x−c
r

)
=

1
2

log
(
r + (x− c)
r − (x− c)

)
=

1
2

log
(

(r + (x− c))(r + (x− c))
(r − (x− c))(r + (x− c)

)
)

=
1
2

log
(

(r + (x− c))2

r2 − (x− c)2

)
=

1
2

log
(

(r + (x− c)2

y2

)
= log

(
x− c+ r

y

)
.

We might then think of defining a distance function dH on the Poincaré Plane {H,LH} in
such a way that the function f : cLr → R defined for P = (x, y) on cLr by

f(P ) = log
(
x− c+ r

y

)
is a ruler. To do so, we simply define dH for points P = (x1, y1) and Q = (x2, y2) on cLr

by

dH(P,Q) = |f(P )− f(Q)| =
∣∣∣∣log

(
x1 − c+ r

y1

)
− log

(
x2 − c+ r

y2

)∣∣∣∣
=

∣∣∣∣∣∣∣log


x1 − c+ r

y1
x2 − c+ r

y2


∣∣∣∣∣∣∣ .

However, it remains to define rulers and distances for points on vertical lines. An analogous
bijection from f : aL→ R is given by, for P = (a, y) on aL,

f(P ) = log(y),
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from which we obtain, for P = (a, y1) and Q = (a, y2) on aL,

dH(P,Q) =
∣∣∣∣log

(
y1
y2

)∣∣∣∣ .
If we include the case y1 = y2 in this formula, we then have dH(P,Q) = 0 if and only if
P = Q, and dH is indeed a distance function on H.

From now on, when we refer to the Poincaré Plane we mean the metric geometry H =
{H,LH , dH}.

Note that the previous example is an example of the following situation: Suppose {P,L} is
an incidence geometry and assume that for each ` ∈ L there exists a bijection f` : `→ R.
Then we may define a distance function on P as follows: Given points P,Q ∈ P, let
d(P,Q) = 0 if P = Q and

d(P,Q) = |f`(P )− f`(Q)|,

where ` =
←→
PQ, otherwise. It is not hard to show that {P,L, d} is a metric geometry. This

illustrates that metric geometries can be very strange since the choice of bijections can be
arbitrary and need not be consistent between different lines.


