Lecture 4: Metric Geometry

4.1 Distance

Definition A distance function on a set S is a function d : § x § — R such that for all
P,QeS, (1)d(P,Q) >0, (2)d(P,Q)=0if and only if P = @, and (3) d(P, Q) = d(Q, P).

Example Define dg : R? x R? — R as follows: if P = (z1,y;) and Q = (2, y2), then

dp(P,Q) = V/(z1 — 22)2 + (11 — 12)?)-

Then dg(P,Q) > 0 for all P,Q € R*. If P = (z1,y1), Q = (22,%2), and dg(P,Q) = 0,
then we must have
(z1 — 22)* + (y1 — y2)> = 0,

from which it follows that
(Il — 1‘2)2 = O

and
(y1 —y2)* = 0.

Hence x1 = x9 and y; = yo, that is, P = Q). Also, if P = (x1,y1) and Q = (z2,y2), then

dp(P,Q) = /(21 — x2)? + (11 —y2)?) = V(x2 — 21)? + (32 — 91)?) = d&(Q, P).
Thus dg is a distance function, which we call the Fuclidean distance function.

Example Define dr : R? x R? — R as follows: if P = (z1,y1) and @ = (x2,¥y2), then

dr(P,Q) = |x1 — z2| + |y1 — y2l.

Then dg(P,Q) > 0 for all P,Q € R*. If P = (z1,y1), Q@ = (22,%2), and dg(P,Q) = 0,
then we must have
|1 — 22| + |y1 — y2| = 0,

from which it follows that
\xl — $2| =0

and
ly1 — y2| = 0.

Hence 21 = z2 and y; = ys, that is, P = Q. Also, if P = (z1,y1) and Q = (z2,y2), then

dr(P,Q) = |x1 — x2| + |[y1 — y2| = |22 — 21| + |y2 — y1| = dr(Q, P).
Thus dr is a distance function, which we call the taxicab distance function.
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4.2 Rulers

Definition Suppose d is a distance function on a set P and {P,L} is an incidence
geometry. Given a line ¢ € £, we call a function f : £ — R a ruler, or coordinate system,
for ¢ if (1) f is a bijection and (2) for every pair of points P, Q € ¢,

d(P,Q) = |f(P) = f(Q)I

We call f(P) the coordinate of P with respect to f.

Definition Suppose d is a distance function on P, {P, L} is an incidence geometry, and
every line £ € £ has a ruler. We say {P,L} satisfies the Ruler Postulate and we call
{P,L,d} a metric geometry.

Note: Suppose {P, L} is an incidence geometry, d is a distance function on P, ¢ € L,
f : £ — R is surjective, and for every P,(Q € P,

d(P,Q) = [f(P) — f(Q)I
Then if P,Q € P with f(P) = f(Q),
d(P,Q) =[f(P) - f(Q)] =0,

from which it follows that P = @ and f is injective (and hence a bijection).

Example Let ¢ = L, be a vertical line in the Cartesian Plane {R? Lg}. If P € ¢, then
P = (a,y) for some y. Define f: ¢ — R by

f(P) = f((a,y)) =y
Then for any P = (a,y;) and Q = (a,y2) on ¢,
|f(P) = F(Q) = ly1 — y2| = de(P, Q).
Since f is a bijection, it follows that f is a ruler for ¢.
Now let £ = L, be a non-vertical line in {R?, £Lz}. Note that if
P = (z1,y1) = (z1, mx2 + b)

and
Q = (z2,y2) = (x2,mx2 +b)

are points on ¢, then

dE(P,Q) = \/(xl — 1‘2)2 +m2(x1 — 1‘2)2 = \/1 -I—m2|x1 — X9|.
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Hence it would be reasonable to define f : ¢ — R at P = (z,y) by

f(P) = f((z,y)) =z 1+ m2.

Then for every P = (z1,y1) and @Q = (z2,y2) on £,

If(P)— f(Q)| =|zaV1+m? — 22V 1+m?| =1+ m?|zy — x| = d(P,Q).

Moreover, f is a surjection since, for any ¢ € R, f(P) =t where

t mit
P= , 4b).
(\/1+m2 V1+m? )

Hence f is a ruler for ¢, and & = {R2 ,Lp,dg} is a metric geometry, which we call the
FEuclidean Plane.

Example 7 = {R2, Lg,dr} is also a metric geometry, which we call the Taxicab Plane.
The verification of this is a homework exercise.

4.3 The hyperbolic plane

We will need the following hyperbolic trigonometric functions:

t —t

sinh(t) = ¢ _26 ,
ty -t
cosh(t) = ¢ —;e ,
sinh(t) e —e?
tanh(t) = =
anh({) cosh(t) et +et’
and . 5
h(t) = = .
sech(?) cosh(t) et +e?
Note that

d
p sinh(t) = cosh(t),

%Cosh(t) = sinh(t),

1
cosh?(t) — sinh?(t) = 1(62): +24 e —e?p2 e =1,

tanh®(t) + sech?(t) = 1,
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d h?(t) — sinh?(t

— tanh(t) = cosh™(¢) 2s1n (t) = sech®(t),

dt cosh”(t)
and p

asech(t) —= —(cosh(t)) ™2 sinh(t) = —sech(t) tanh(t).
Moreover,
, lim tanh(t) = —1

and

lim tanh(t) =1,

t—o0

combined with the fact that % tanh(t) > 0 for all ¢, shows that f(t) = tanh(t) is a bijection
from (—o0,00) to (—1,1). It is also easy to show that cosh(¢) > 1 for all ¢, from which it
follows that 0 < sech(t) <1 for all ¢.

From the above, the function ¢(t) = (tanh(t),sech(t)) parametrizes the upper half of the
circle 22 + y? = 1, with
p(0) = (0, 1),
im o(t) = (=1,0),
and
1tlim o(t) = (1,0).

More generally, ¥ (t) = (rtanh(t) + ¢, rsech(t)) parametrizes the upper half of the circle
(x —¢)? +y? = r?, with
1/)(0) = (Cv T),

t—lir—noo Y(t) = (c—r,0),

and
lim ¢(t) = (c+7,0).

t—o00

Moreover, ¢ : R — L, is a bijection.

We now know that if P = (z,y) lies on .L,, then there exists a unique value of ¢ such
(z,y) = (rtanh(t) 4+ ¢, rsech(t)). In particular,

x = rtanh(t) + c,

SO
T —cC

= tanh(t).
" anh(t)

Now s = tanh(t) implies
el —et -1 wu?P-1

S:et+e—t:e2t+1:u2+1’
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where u = e'. Hence

(1—s)u®=1+s,

= (122,
Hence E g
(1)
- i (22120)
N =
(o)
g (o)
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We might then think of defining a distance function dg on the Poincaré Plane {H, Ly} in

such a way that the function f : .L, — R defined for P = (z,

)

x—cH+r

7(P) = 1og( :

y) on .L, by

is a ruler. To do so, we simply define dy for points P = (x1,y1) and Q = (z2,y2) on L,

by
r1—c+r
1u(P,Q) = 11(P) = Q)] = flog (=4
r1—cCc—+r
— Y1
=8| mmcwr
Y2

)

Tg—c+r
Y2

)

However, it remains to define rulers and distances for points on vertical lines. An analogous

bijection from f : ,L — R is given by, for P = (a,y) on ,L,

f(P) =log(y),
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from which we obtain, for P = (a,y;) and Q = (a,y2) on L,
log (2) ‘ .
Y2

If we include the case y; = y2 in this formula, we then have dy (P, Q) = 0 if and only if
P =@, and dy is indeed a distance function on H.

dH(P7Q):

From now on, when we refer to the Poincaré Plane we mean the metric geometry H =

{H, Ly, du}.

Note that the previous example is an example of the following situation: Suppose {P, L} is
an incidence geometry and assume that for each ¢ € £ there exists a bijection f, : £ — R.
Then we may define a distance function on P as follows: Given points P, € P, let
d(P,Q)=0if P=(Q and

d(P, Q) = |fe(P) = fe(Q)],

where ¢ = PQ, otherwise. It is not hard to show that {P, £, d} is a metric geometry. This
illustrates that metric geometries can be very strange since the choice of bijections can be
arbitrary and need not be consistent between different lines.



