
Lecture 3: Incidence Geometry

3.1 Abstract geometry

Definition Suppose P is a set and L is a set of non-empty subsets of P such that (1)
for every A ∈ P and B ∈ P there exists ` ∈ L such that A ∈ ` and B ∈ `, and (2) for
every ` ∈ L, ` has at least two elements from P. We call {P,L} an abstract geometry, the
elements of P points, and the elements of L lines. Moreover, if P ∈ P, ` ∈ L, and P ∈ `,
we say P lies on `, or that ` passes through P .

Note: The conditions in the definition say that every pair of points lies on a line and that
every line passes through at least two points.

Example Recall that the unit sphere in R3 is the set

S2 = {(x, y, z) : x ∈ R, y ∈ R, z ∈ R, x2 + y2 + z2 = 1}

and, for any given real numbers a, b, c, and d, where not all of a, b, and c are 0, the set

{(x, y, z) : x ∈ R, y ∈ R, z ∈ R, ax + by + cz = d}

is a plane in R3. If d = 0, the plane passes through the origin. Given a plane A passing
through the origin, the set S2 ∩ A is a great circle of S2. Given P = (x1, y1, z1) and
Q = (x2, y2, z2) on S2, we will show that P and Q both lie on some great circle. To do so,
we need to find real numbers a, b, and c, not all 0, such that

ax1 + by1 + cz1 = 0

and
ax2 + by2 + cz2 = 0.

Since this is a homogeneous system in three unknowns, we know it is possible to solve for
a, b, and c, not all 0. Thus if we let LR be the set of great circles of S2, then {S2,LR} is
an abstract geometry, called the Riemann sphere.

Note that on the Riemann sphere, the points P = (0, 0, 1) (the “north pole”) and Q =
(0, 0,−1) (the “south pole”) lie both on the great circle determined by the plane with
equation x = 0 and the the great circle determined by the plane y = 0. That is, in this
geometry, two distinct points do not determine a unique line.

3.2 Incidence geometry

Definition Given an abstract geometry {P,L}, a set of points S ⊂ P is collinear if there
exists a line ` ∈ L such that S ⊂ L. A set of points which is not collinear is non-collinear.
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Definition An abstract geometry {P,L} is an incidence geometry if (1) distinct points
P and Q in P lie on a unique line, and (2) there exists a set of three non-collinear points.

Example Given a real number a, let

La = {(x, y) : x ∈ R, y ∈ R, x = a}.

Given real numbers m and b, let

Lm,b = {(x, y) : x ∈ R, y ∈ R, y = mx + b}.

Let
LE = {La : a ∈ R} ∪ {Lm,b : m ∈ R, b ∈ R}.

We will show that {R2,LE} is an incidence geometry. Let P = (x1, y1) and Q = (x2, y2)
be distinct points in R2. If x1 = x2, let a = x1. Then P ∈ La and Q ∈ La. Clearly,
there is no b 6= a for which P ∈ Lb. Suppose there exist real numbers m and b for which
P ∈ Lm,b and Q ∈ Lm,b). Then

y1 = mx1 + b = ax + b

and
y2 = mx2 + b = ax + b.

But then
P = (x1, y1) = (a, ax + b) = (a, y2) = (x2, y2) = Q,

contradicting our assumption that P and Q are distinct points.

Now suppose x1 6= x2. We need to find m and b such that P and Q both lie on Lm,b. That
is, we want

y1 = mx1 + b

and
y2 = mx2 + b.

Subtracting, we have
y2 − y1 = m(x2 − x1),

from which we have, since x2 − x1 6= 0,

m =
y2 − y1

x2 − x1
.

We then have
b = y1 −mx1 = y2 −mx2.

Note that since the solutions are unique, P and Q lie on a unique line Lm,b.
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You will show in the homework that there exists a set of three non-collinear points. Hence
E = {R2,LE} is an incidence geometry, which we call the Cartesian Plane.

We call the lines La vertical lines and the lines Lm,b non-vertical lines.

Example Let H = {(x, y) : (x, y) ∈ R2, y > 0}. Given any real number a, let aL =
{(x, y) : (x, y) ∈ H, x = a}, and given any real numbers c and r > 0 let

cLr = {(x, y) : (x, y) ∈ H, (x− c)2 + y2 = r2}.

Let
LH = {aL : a ∈ R} ∪ {cLr : c ∈ R, r > 0}.

We will show that {H,LH} is an incidence geometry. Let P = (x1, y1) and Q = (x2, y2)
be distinct points in H. If x1 = x2, let a = x1. Then P and Q both lie on aL. Suppose P
and Q also lie on cLr. Then we must have

(x1 − c)2 + y2
1 = r2

and
(x2 − c)2 + y2

2 = r2.

Hence, since a = x1 = x2,

y2
1 = r2 − (x1 − c)2 = r2 − (a− c)2 = r2 − (x2 − c)2 = y2

2 .

Since y1 > 0 and y2 > 0, it follows that y1 = y2, and P = Q, contradicting our assumption
that P and Q are distinct points in H.

Now suppose x1 6= x2. We need to find c and r > 0 such that

(x1 − c)2 + y2
1 = r2

and
(x2 − c)2 + y2

2 = r2.

Subtracting and expanding gives us

x2
1 − 2x1c− x2

2 + 2x2c = y2
2 − y2

1 ,

from which it follows that

c =
y2
2 − y2

1 + x2
2 − x2

1

2(x2 − x1)
.

We then have
r =

√
(x1 − c)2 + y2

1 =
√

(x2 − c)2 + y2
2 .

Thus P and Q lie on a unique line cLr.
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You will show in the homework that there exists a set of three non-collinear points. Hence
H = {H,LH} is an incidence geometry, which we call the Poincaré Plane.

We call the lines aL type I lines and the lines cLr type II lines.

Notation: Given distinct points P and Q in an incidence geometry, we let
←→
PQ denote the

unique line on which both P and Q lie.

Theorem If `1 and `2 are lines in an incidence geometry and `1 ∩ `2 has two or more
distinct points, then `1 = `2.

Proof If P and Q are distinct points in `1 ∩ `2, then

`1 =
←→
PQ = `2.

Definition We say lines `1 and `2 in an abstract geometry are parallel, denoted `1‖`2,
if either `1 = `2 or `1 ∩ `2 = ∅.

Theorem In an incidence geometry, two distinct lines are either parallel or they intersect
in exactly one point.


