Lecture 3: Incidence Geometry

3.1 Abstract geometry

Definition Suppose \mathcal{P} is a set and \mathcal{L} is a set of non-empty subsets of \mathcal{P} such that (1) for every $A \in \mathcal{P}$ and $B \in \mathcal{P}$ there exists $\ell \in \mathcal{L}$ such that $A \in \ell$ and $B \in \ell$, and (2) for every $\ell \in \mathcal{L}$, ℓ has at least two elements from \mathcal{P} . We call $\{\mathcal{P}, \mathcal{L}\}$ an *abstract geometry*, the elements of \mathcal{P} points, and the elements of \mathcal{L} lines. Moreover, if $P \in \mathcal{P}$, $\ell \in \mathcal{L}$, and $P \in \ell$, we say P lies on ℓ , or that ℓ passes through P.

Note: The conditions in the definition say that every pair of points lies on a line and that every line passes through at least two points.

Example Recall that the unit sphere in \mathbb{R}^3 is the set

$$S^{2} = \{(x, y, z) : x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}, x^{2} + y^{2} + z^{2} = 1\}$$

and, for any given real numbers a, b, c, and d, where not all of a, b, and c are 0, the set

$$\{(x, y, z) : x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}, ax + by + cz = d\}$$

is a plane in \mathbb{R}^3 . If d = 0, the plane passes through the origin. Given a plane A passing through the origin, the set $S^2 \cap A$ is a great circle of S^2 . Given $P = (x_1, y_1, z_1)$ and $Q = (x_2, y_2, z_2)$ on S^2 , we will show that P and Q both lie on some great circle. To do so, we need to find real numbers a, b, and c, not all 0, such that

$$ax_1 + by_1 + cz_1 = 0$$

and

$$ax_2 + by_2 + cz_2 = 0.$$

Since this is a homogeneous system in three unknowns, we know it is possible to solve for a, b, and c, not all 0. Thus if we let \mathcal{L}_R be the set of great circles of S^2 , then $\{S^2, \mathcal{L}_R\}$ is an abstract geometry, called the *Riemann sphere*.

Note that on the Riemann sphere, the points P = (0, 0, 1) (the "north pole") and Q = (0, 0, -1) (the "south pole") lie both on the great circle determined by the plane with equation x = 0 and the the great circle determined by the plane y = 0. That is, in this geometry, two distinct points do not determine a unique line.

3.2 Incidence geometry

Definition Given an abstract geometry $\{\mathcal{P}, \mathcal{L}\}$, a set of points $S \subset \mathcal{P}$ is *collinear* if there exists a line $\ell \in \mathcal{L}$ such that $S \subset \mathcal{L}$. A set of points which is not collinear is *non-collinear*.

Definition An abstract geometry $\{\mathcal{P}, \mathcal{L}\}$ is an *incidence geometry* if (1) distinct points P and Q in \mathcal{P} lie on a unique line, and (2) there exists a set of three non-collinear points.

Example Given a real number a, let

$$L_a = \{(x, y) : x \in \mathbb{R}, y \in \mathbb{R}, x = a\}.$$

Given real numbers m and b, let

$$L_{m,b} = \{(x,y) : x \in \mathbb{R}, y \in \mathbb{R}, y = mx + b\}.$$

Let

$$\mathcal{L}_E = \{ L_a : a \in \mathbb{R} \} \cup \{ L_{m,b} : m \in \mathbb{R}, b \in \mathbb{R} \}$$

We will show that $\{\mathbb{R}^2, \mathcal{L}_E\}$ is an incidence geometry. Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be distinct points in \mathbb{R}^2 . If $x_1 = x_2$, let $a = x_1$. Then $P \in L_a$ and $Q \in L_a$. Clearly, there is no $b \neq a$ for which $P \in L_b$. Suppose there exist real numbers m and b for which $P \in L_{m,b}$ and $Q \in L_{m,b}$. Then

$$y_1 = mx_1 + b = ax + b$$

and

$$y_2 = mx_2 + b = ax + b.$$

But then

$$P = (x_1, y_1) = (a, ax + b) = (a, y_2) = (x_2, y_2) = Q$$

contradicting our assumption that P and Q are distinct points.

Now suppose $x_1 \neq x_2$. We need to find m and b such that P and Q both lie on $L_{m,b}$. That is, we want

$$y_1 = mx_1 + b$$

and

$$y_2 = mx_2 + b.$$

Subtracting, we have

$$y_2 - y_1 = m(x_2 - x_1),$$

from which we have, since $x_2 - x_1 \neq 0$,

$$m = \frac{y_2 - y_1}{x_2 - x_1}.$$

We then have

$$b = y_1 - mx_1 = y_2 - mx_2$$

Note that since the solutions are unique, P and Q lie on a unique line $L_{m,b}$.

You will show in the homework that there exists a set of three non-collinear points. Hence $\mathcal{E} = \{\mathbb{R}^2, \mathcal{L}_E\}$ is an incidence geometry, which we call the *Cartesian Plane*.

We call the lines L_a vertical lines and the lines $L_{m,b}$ non-vertical lines.

Example Let $\mathbb{H} = \{(x, y) : (x, y) \in \mathbb{R}^2, y > 0\}$. Given any real number a, let $_aL = \{(x, y) : (x, y) \in \mathbb{H}, x = a\}$, and given any real numbers c and r > 0 let

$$_{c}L_{r} = \{(x,y) : (x,y) \in \mathbb{H}, (x-c)^{2} + y^{2} = r^{2}\}.$$

Let

$$\mathcal{L}_H = \{a_L : a \in \mathbb{R}\} \cup \{c_L L_r : c \in \mathbb{R}, r > 0\}$$

We will show that $\{\mathbb{H}, \mathcal{L}_H\}$ is an incidence geometry. Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be distinct points in \mathbb{H} . If $x_1 = x_2$, let $a = x_1$. Then P and Q both lie on $_aL$. Suppose P and Q also lie on $_cL_r$. Then we must have

$$(x_1 - c)^2 + y_1^2 = r^2$$

and

$$(x_2 - c)^2 + y_2^2 = r^2.$$

Hence, since $a = x_1 = x_2$,

$$y_1^2 = r^2 - (x_1 - c)^2 = r^2 - (a - c)^2 = r^2 - (x_2 - c)^2 = y_2^2.$$

Since $y_1 > 0$ and $y_2 > 0$, it follows that $y_1 = y_2$, and P = Q, contradicting our assumption that P and Q are distinct points in \mathbb{H} .

Now suppose $x_1 \neq x_2$. We need to find c and r > 0 such that

$$(x_1 - c)^2 + y_1^2 = r^2$$

and

$$(x_2 - c)^2 + y_2^2 = r^2.$$

Subtracting and expanding gives us

$$x_1^2 - 2x_1c - x_2^2 + 2x_2c = y_2^2 - y_1^2,$$

from which it follows that

$$c = \frac{y_2^2 - y_1^2 + x_2^2 - x_1^2}{2(x_2 - x_1)}.$$

We then have

$$r = \sqrt{(x_1 - c)^2 + y_1^2} = \sqrt{(x_2 - c)^2 + y_2^2}.$$

Thus P and Q lie on a unique line $_{c}L_{r}$.

You will show in the homework that there exists a set of three non-collinear points. Hence $\mathcal{H} = \{\mathbb{H}, \mathcal{L}_H\}$ is an incidence geometry, which we call the *Poincaré Plane*.

We call the lines $_{a}L$ type I lines and the lines $_{c}L_{r}$ type II lines.

Notation: Given distinct points P and Q in an incidence geometry, we let $\stackrel{\leftrightarrow}{PQ}$ denote the unique line on which both P and Q lie.

Theorem If ℓ_1 and ℓ_2 are lines in an incidence geometry and $\ell_1 \cap \ell_2$ has two or more distinct points, then $\ell_1 = \ell_2$.

Proof If P and Q are distinct points in $\ell_1 \cap \ell_2$, then

$$\ell_1 = \overrightarrow{PQ} = \ell_2.$$

Definition We say lines ℓ_1 and ℓ_2 in an abstract geometry are *parallel*, denoted $\ell_1 || \ell_2$, if either $\ell_1 = \ell_2$ or $\ell_1 \cap \ell_2 = \emptyset$.

Theorem In an incidence geometry, two distinct lines are either parallel or they intersect in exactly one point.