Lecture 3: Incidence Geometry

3.1 Abstract geometry

Definition Suppose \mathcal{P} is a set and \mathcal{L} is a set of non-empty subsets of \mathcal{P} such that (1) for every $A \in \mathcal{P}$ and $B \in \mathcal{P}$ there exists $\ell \in \mathcal{L}$ such that $A \in \ell$ and $B \in \ell$, and (2) for every $\ell \in \mathcal{L}, \ell$ has at least two elements from \mathcal{P}. We call $\{\mathcal{P}, \mathcal{L}\}$ an abstract geometry, the elements of \mathcal{P} points, and the elements of \mathcal{L} lines. Moreover, if $P \in \mathcal{P}, \ell \in \mathcal{L}$, and $P \in \ell$, we say P lies on ℓ, or that ℓ passes through P.

Note: The conditions in the definition say that every pair of points lies on a line and that every line passes through at least two points.

Example Recall that the unit sphere in \mathbb{R}^{3} is the set

$$
S^{2}=\left\{(x, y, z): x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}, x^{2}+y^{2}+z^{2}=1\right\}
$$

and, for any given real numbers a, b, c, and d, where not all of a, b, and c are 0 , the set

$$
\{(x, y, z): x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}, a x+b y+c z=d\}
$$

is a plane in \mathbb{R}^{3}. If $d=0$, the plane passes through the origin. Given a plane A passing through the origin, the set $S^{2} \cap A$ is a great circle of S^{2}. Given $P=\left(x_{1}, y_{1}, z_{1}\right)$ and $Q=\left(x_{2}, y_{2}, z_{2}\right)$ on S^{2}, we will show that P and Q both lie on some great circle. To do so, we need to find real numbers a, b, and c, not all 0 , such that

$$
a x_{1}+b y_{1}+c z_{1}=0
$$

and

$$
a x_{2}+b y_{2}+c z_{2}=0 .
$$

Since this is a homogeneous system in three unknowns, we know it is possible to solve for a, b, and c, not all 0 . Thus if we let \mathcal{L}_{R} be the set of great circles of S^{2}, then $\left\{S^{2}, \mathcal{L}_{R}\right\}$ is an abstract geometry, called the Riemann sphere.

Note that on the Riemann sphere, the points $P=(0,0,1)$ (the "north pole") and $Q=$ $(0,0,-1)$ (the "south pole") lie both on the great circle determined by the plane with equation $x=0$ and the the great circle determined by the plane $y=0$. That is, in this geometry, two distinct points do not determine a unique line.

3.2 Incidence geometry

Definition Given an abstract geometry $\{\mathcal{P}, \mathcal{L}\}$, a set of points $S \subset \mathcal{P}$ is collinear if there exists a line $\ell \in \mathcal{L}$ such that $S \subset \mathcal{L}$. A set of points which is not collinear is non-collinear.

Definition An abstract geometry $\{\mathcal{P}, \mathcal{L}\}$ is an incidence geometry if (1) distinct points P and Q in \mathcal{P} lie on a unique line, and (2) there exists a set of three non-collinear points.

Example Given a real number a, let

$$
L_{a}=\{(x, y): x \in \mathbb{R}, y \in \mathbb{R}, x=a\}
$$

Given real numbers m and b, let

$$
L_{m, b}=\{(x, y): x \in \mathbb{R}, y \in \mathbb{R}, y=m x+b\}
$$

Let

$$
\mathcal{L}_{E}=\left\{L_{a}: a \in \mathbb{R}\right\} \cup\left\{L_{m, b}: m \in \mathbb{R}, b \in \mathbb{R}\right\}
$$

We will show that $\left\{\mathbb{R}^{2}, \mathcal{L}_{E}\right\}$ is an incidence geometry. Let $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ be distinct points in \mathbb{R}^{2}. If $x_{1}=x_{2}$, let $a=x_{1}$. Then $P \in L_{a}$ and $Q \in L_{a}$. Clearly, there is no $b \neq a$ for which $P \in L_{b}$. Suppose there exist real numbers m and b for which $P \in L_{m, b}$ and $Q \in L_{m, b}$. Then

$$
y_{1}=m x_{1}+b=a x+b
$$

and

$$
y_{2}=m x_{2}+b=a x+b .
$$

But then

$$
P=\left(x_{1}, y_{1}\right)=(a, a x+b)=\left(a, y_{2}\right)=\left(x_{2}, y_{2}\right)=Q,
$$

contradicting our assumption that P and Q are distinct points.
Now suppose $x_{1} \neq x_{2}$. We need to find m and b such that P and Q both lie on $L_{m, b}$. That is, we want

$$
y_{1}=m x_{1}+b
$$

and

$$
y_{2}=m x_{2}+b .
$$

Subtracting, we have

$$
y_{2}-y_{1}=m\left(x_{2}-x_{1}\right)
$$

from which we have, since $x_{2}-x_{1} \neq 0$,

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

We then have

$$
b=y_{1}-m x_{1}=y_{2}-m x_{2}
$$

Note that since the solutions are unique, P and Q lie on a unique line $L_{m, b}$.

You will show in the homework that there exists a set of three non-collinear points. Hence $\mathcal{E}=\left\{\mathbb{R}^{2}, \mathcal{L}_{E}\right\}$ is an incidence geometry, which we call the Cartesian Plane.

We call the lines L_{a} vertical lines and the lines $L_{m, b}$ non-vertical lines.
Example Let $\mathbb{H}=\left\{(x, y):(x, y) \in \mathbb{R}^{2}, y>0\right\}$. Given any real number a, let ${ }_{a} L=$ $\{(x, y):(x, y) \in \mathbb{H}, x=a\}$, and given any real numbers c and $r>0$ let

$$
{ }_{c} L_{r}=\left\{(x, y):(x, y) \in \mathbb{H},(x-c)^{2}+y^{2}=r^{2}\right\} .
$$

Let

$$
\mathcal{L}_{H}=\left\{a_{L}: a \in \mathbb{R}\right\} \cup\left\{{ }_{c} L_{r}: c \in \mathbb{R}, r>0\right\} .
$$

We will show that $\left\{\mathbb{H}, \mathcal{L}_{H}\right\}$ is an incidence geometry. Let $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ be distinct points in \mathbb{H}. If $x_{1}=x_{2}$, let $a=x_{1}$. Then P and Q both lie on ${ }_{a} L$. Suppose P and Q also lie on ${ }_{c} L_{r}$. Then we must have

$$
\left(x_{1}-c\right)^{2}+y_{1}^{2}=r^{2}
$$

and

$$
\left(x_{2}-c\right)^{2}+y_{2}^{2}=r^{2}
$$

Hence, since $a=x_{1}=x_{2}$,

$$
y_{1}^{2}=r^{2}-\left(x_{1}-c\right)^{2}=r^{2}-(a-c)^{2}=r^{2}-\left(x_{2}-c\right)^{2}=y_{2}^{2}
$$

Since $y_{1}>0$ and $y_{2}>0$, it follows that $y_{1}=y_{2}$, and $P=Q$, contradicting our assumption that P and Q are distinct points in \mathbb{H}.

Now suppose $x_{1} \neq x_{2}$. We need to find c and $r>0$ such that

$$
\left(x_{1}-c\right)^{2}+y_{1}^{2}=r^{2}
$$

and

$$
\left(x_{2}-c\right)^{2}+y_{2}^{2}=r^{2}
$$

Subtracting and expanding gives us

$$
x_{1}^{2}-2 x_{1} c-x_{2}^{2}+2 x_{2} c=y_{2}^{2}-y_{1}^{2},
$$

from which it follows that

$$
c=\frac{y_{2}^{2}-y_{1}^{2}+x_{2}^{2}-x_{1}^{2}}{2\left(x_{2}-x_{1}\right)}
$$

We then have

$$
r=\sqrt{\left(x_{1}-c\right)^{2}+y_{1}^{2}}=\sqrt{\left(x_{2}-c\right)^{2}+y_{2}^{2}}
$$

Thus P and Q lie on a unique line ${ }_{c} L_{r}$.

You will show in the homework that there exists a set of three non-collinear points. Hence $\mathcal{H}=\left\{\mathbb{H}, \mathcal{L}_{H}\right\}$ is an incidence geometry, which we call the Poincaré Plane.

We call the lines ${ }_{a} L$ type I lines and the lines ${ }_{c} L_{r}$ type II lines.
Notation: Given distinct points P and Q in an incidence geometry, we let $\overleftrightarrow{P Q}$ denote the unique line on which both P and Q lie.

Theorem If ℓ_{1} and ℓ_{2} are lines in an incidence geometry and $\ell_{1} \cap \ell_{2}$ has two or more distinct points, then $\ell_{1}=\ell_{2}$.

Proof If P and Q are distinct points in $\ell_{1} \cap \ell_{2}$, then

$$
\ell_{1}=\overleftrightarrow{P Q}=\ell_{2}
$$

Definition We say lines ℓ_{1} and ℓ_{2} in an abstract geometry are parallel, denoted $\ell_{1} \| \ell_{2}$, if either $\ell_{1}=\ell_{2}$ or $\ell_{1} \cap \ell_{2}=\emptyset$.

Theorem In an incidence geometry, two distinct lines are either parallel or they intersect in exactly one point.

