Lecture 25: The Critical Function

25.1 The critical number

Theorem If, in a neutral geometry, ℓ is a line, P is a point, $P \notin \ell, D$ is the foot of the perpendicular from P to ℓ, and C is a point with $m(\angle D P C) \geq 90$, then $\overrightarrow{P C} \cap \ell=\emptyset$.

Proof If $m(\angle D P C)=90$, then $\overleftrightarrow{P C}$ is parallel to ℓ. If $m(\angle D B C)>90$, then let A be a point on the same side of $\overleftrightarrow{P D}$ as C with $m(\angle D P A)=90$. Then $A \in \operatorname{int}(\angle P D C)$, so D and C lie on opposite sides of $\overleftrightarrow{P A}$. Since $\overleftrightarrow{P A}$ is parallel to ℓ, it follows that $\operatorname{int}(\overrightarrow{P C})$ and ℓ are on opposite sides of $\overleftrightarrow{P A}$. Hence $\overrightarrow{P C} \cap \ell=\emptyset$.

Definition Given a nonempty set S of real numbers, we call r the supremum, or least upper bound, of S if (1) $s \leq r$ for all $s \in S$, and (2) if $t<r$, then there exists $s \in S$ such that $t<r$. The supremum of a set S is denoted either $\sup S$ or lub S.

Example If $S=\left\{x: x \in \mathbb{Q}, x^{2} \leq 2\right\}$, then $\sup S=\sqrt{2}$.
Example If $S=\{x: x \in \mathbb{R}, 0<x \leq 3\}$, then $\sup S=3$.
Note: If S is a nonempty, bounded set of real numbers, then S has a unique least upper bound.

Definition In a neutral geometry, given a line ℓ, a point $P, P \notin \ell$, and D the foot of the perpendicular from P to ℓ, let

$$
K(P, \ell)=\{r: r \in \mathbb{R}, r=m(\angle D P C) \text { where } \overrightarrow{P C} \cap \ell \neq \emptyset\} .
$$

We call

$$
r(P, \ell)=\sup K(P, l)
$$

the critical number for P and ℓ.
Example In the Euclidean Plane, $r(P, \ell)=90$ for all lines ℓ and points $P \notin \ell$.
Theorem If, in a neutral geometry, P is a point not on line ℓ, D is the foot of the perpendicular from P to ℓ, and $m(\angle D P C) \geq r(P, \ell)$, then $\overrightarrow{P C} \cap \ell=\emptyset$. If $m(\angle D P C)<$ $r(P, \ell)$, then $\overrightarrow{P C} \cap \ell \neq \emptyset$.

Proof Suppose $m(\angle D P C)=r(P, \ell)$ and $\overrightarrow{P C} \cap \ell \neq \emptyset$. Let $\overrightarrow{P C} \cap \ell=\{R\}$ and let S be a point with $D-R-S$. Then $R \in \operatorname{int}(\angle D P S)$, so $m(\angle D P S)>r(P, \ell)$, contradicting the
fact that $m(\angle D P S) \in K(P, \ell)$ and $r(P, \ell)=\sup K(P, \ell)$. Note that if $B-P-C$, then $\overrightarrow{P B} \cap \ell=\emptyset$ since $m(\angle D P B) \geq 90$. Hence, in fact, if $m(\angle D P C)=r(P, \ell)$, then $\overleftrightarrow{P C}$ is parallel to ℓ.

Now suppose $m(\angle D P C)>r(P, \ell)$. Let E be a point on the same side of $\overleftrightarrow{P D}$ as C for which $m(\angle D P E)=r(P, \ell)$. Then $\overleftrightarrow{P E}$ is a parallel to ℓ. Now $E \in \operatorname{int}(\angle D P C)$, so D and C are on opposite sides of $\overleftrightarrow{P E}$. Hence $\overrightarrow{P C}$ and ℓ are on opposite sides of $\overleftrightarrow{P E}$, and so $\overrightarrow{P C} \cap \ell=\emptyset$.

Now suppose $m(\angle D P C)<r(P, \ell)$. Then there exists an $s \in \mathbb{R}$ and a point F such that $s=m(\angle D P F)$ and $\overrightarrow{P F} \cap \ell \neq \emptyset$. Let $\{A\}=\overrightarrow{P F} \cap \ell$. If A is on the same side of $\overleftrightarrow{P D}$ as C, then $C \in \operatorname{int}(\angle D P F)$. Hence, by Crossbar, $\overrightarrow{P C} \cap \overline{D A} \neq \emptyset$, and so $\overrightarrow{P C} \cap \ell \neq \emptyset$. If A and C are on opposite sides of $\overleftrightarrow{P D}$, let A^{\prime} be the point on ℓ with $A-D-A^{\prime}$ and $\overline{A D} \simeq D A^{\prime}$. Then $\triangle A D P \simeq \triangle A^{\prime} D P$ by Side-Angle-Side. In particular, $\angle D P A^{\prime} \simeq \angle D P A$. Hence $C \in \operatorname{int}\left(\angle D P A^{\prime}\right)$, and so, as above, $\overrightarrow{P C} \cap \overrightarrow{A^{\prime} D} \neq \emptyset$. Hence $\overrightarrow{P C} \cap \ell \neq \emptyset$.

Note: We now have, for $C \notin \overleftrightarrow{P D}, \overrightarrow{P C} \cap \ell$ if and only if $m(\angle D P C)<r(P, \ell)$.
Theorem If, in a neutral geometry, ℓ is a line and P is a point not on ℓ, then there exist two or more lines through P parallel to ℓ if and only if $r(P, \ell)<90$.

Proof See homework.

25.2 The critical function

Theorem If, in a neutral geometry, ℓ and m are lines, P and Q are points, $P \notin \ell$, $Q \notin m$, and $d(P, \ell)=d(Q, m)$, then $r(P, \ell)=r(Q, \ell)$.

Proof The result will follow if we prove that $K(P, \ell)=K(Q, m)$. Let D be the foot of the perpendicular from P to ℓ and F be the foot of the perpendicular from Q to m. Then $\overline{P D} \simeq \overline{Q F}$. If $s \in K(P, \ell)$, then there exists a point $C \in \ell$ with $m(\angle D P C)=s$. Let G be a point on m with $\overline{D C} \simeq \overline{F G}$. Then $\triangle P D C \simeq \triangle Q F G$ by Side-Angle-Side. In particular, $m(\angle F Q G)=m(\angle D P C)$, so $s \in K(Q, m)$. Hence $K(P, \ell) \subset K(Q, m)$. A similar argument shows that $K(Q, m) \subset K(P, \ell)$, and so $K(Q, m)=K(P, \ell)$. Thus $r(P, \ell)=r(Q, m)$.

Definition In a neutral geometry, we call the function $\Pi:(0, \infty) \rightarrow(0,90]$ given by

$$
\Pi(t)=r(P, \ell)
$$

where ℓ is a line and P is a point with $d(P, \ell)=t$, the critical function.
Definition For the Euclidean Plane, $\Pi(t)=90$ for all $0<t<\infty$.

Example For the Poincaré Plane, one may show that

$$
\Pi(t)=\tan ^{-1}\left(\frac{1}{\sinh (t)}\right)
$$

Theorem In a neutral geometry, $\Pi(s) \leq \Pi(t)$ whenever $s>t$.
Proof Let ℓ be a line, $D \in \ell$, and P and Q two points such that $Q-P-D, \overleftrightarrow{Q D} \perp \ell$, $Q D=s$, and $P D=t$. Let C and E be points on the same side of $\overleftrightarrow{P D}$ with $m(\angle D P C)=$ $\Pi(t)$ and $m(\angle D Q E)=\Pi(t)$. Then $\overleftrightarrow{P C}$ is parallel to ℓ and $\overleftrightarrow{P C}$ is parallel to $\overleftrightarrow{Q E}$ (since $\overleftrightarrow{Q D}$ is a transversal of $\overleftrightarrow{P C}$ and $\overleftrightarrow{Q E}$ with a pair of congruent corresponding angles, and hence congruent alternating interior angles). Since Q and D are on opposite sides of $\overleftrightarrow{P C}$, it follows that $\overleftrightarrow{Q E} \cap \ell=\emptyset$. In particular, $\overrightarrow{Q E} \cap \ell=\emptyset$, so

$$
\Pi(s) \leq m(\angle D Q E)=\Pi(t)
$$

Theorem If, in a neutral geometry, $\Pi(a)<90$ for some $a \in(0, \infty)$, then $\Pi\left(\frac{a}{2}\right)<90$.
Proof Let ℓ be a line, $D \in \ell, P$ a point with $\overleftrightarrow{P D} \perp \ell$ and $P D=a$, and Q the midpoint of $\overline{P D}$. Let C be a point with $m(\angle D P C)=\Pi(a)$ and let m be the unique line through Q perpendicular to $\overleftrightarrow{P D}$.

If $\overrightarrow{P C} \cap m=\emptyset$, then

$$
\Pi\left(\frac{a}{2}\right)=r(P, m) \leq m(\angle Q P C)=\Pi(a)<90 .
$$

So suppose $\overrightarrow{P C} \cap m=\{A\}$. Let B be a point with $P-A-B$. Then $B \in \operatorname{int}(\angle D Q A)$, so

$$
m(\angle D Q B)<m(\angle D Q A)=90
$$

Since $\overrightarrow{P A} \cap \ell=\emptyset, P$ and B are on the same side of ℓ. Since $P-Q-D, P$ and Q are on the same side of ℓ. Hence B and Q are on the same side of ℓ, so $\overline{Q B} \cap \ell=\emptyset$. If E is a point with $Q-B-E$, then Q and E are on opposite sides of $\overleftrightarrow{P C}$. Since $P-Q-D, Q$ and D are on the same side of $\overleftrightarrow{P C}$. Hence E and D are on opposite sides of $\overleftrightarrow{P C}$. Thus $\overrightarrow{B E} \cap \ell=\emptyset$, and so $\overrightarrow{Q B} \cap \ell=\emptyset$. Thus

$$
\Pi\left(\frac{a}{2}\right)=r(Q, \ell) \leq m(\angle D Q B)<90
$$

Theorem If, in a neutral geometry, $\Pi(a)<90$ for some $a \in(0, \infty)$, the $\Pi(t)<90$ for all $t>0$.

Proof Let $t \in(0, \infty)$. If $t \geq a$, then

$$
\Pi(t) \leq \Pi(a)<90
$$

If $t<a$, let n be an integer for which

$$
\frac{a}{2^{n}}<t
$$

Then

$$
\Pi(t) \leq \Pi\left(\frac{a}{2^{n}}\right)<90
$$

All or None Theorem If, in a neutral geometry, there exists a line ℓ and a point P not on ℓ for which there is a unique line through P parallel to ℓ, then the Euclidean Parallel Property holds.

Definition We say a neutral geometry satisfies the Hyperbolic Parallel Property if for each line ℓ and point $P \notin \ell$ there exist two or more lines through P parallel to ℓ.

Definition We call a neutral geometry satisfying the Euclidean Parallel Property a Euclidean geometry. We call a neutral geometry satisfying the Hyperbolic Parallel Property a hyperbolic geometry.

Note: A given neutral geometry must be either a Euclidean geometry or a hyperbolic geometry.

