
Lecture 25: The Critical Function

25.1 The critical number

Theorem If, in a neutral geometry, ` is a line, P is a point, P /∈ `, D is the foot of the

perpendicular from P to `, and C is a point with m(∠DPC) ≥ 90, then
−→
PC ∩ ` = ∅.

Proof If m(∠DPC) = 90, then
←→
PC is parallel to `. If m(∠DBC) > 90, then let A be

a point on the same side of
←→
PD as C with m(∠DPA) = 90. Then A ∈ int(∠PDC), so D

and C lie on opposite sides of
←→
PA. Since

←→
PA is parallel to `, it follows that int(

−→
PC) and

` are on opposite sides of
←→
PA. Hence

−→
PC ∩ ` = ∅.

Definition Given a nonempty set S of real numbers, we call r the supremum, or least
upper bound, of S if (1) s ≤ r for all s ∈ S, and (2) if t < r, then there exists s ∈ S such
that t < r. The supremum of a set S is denoted either supS or lub S.

Example If S = {x : x ∈ Q, x2 ≤ 2}, then supS =
√

2.

Example If S = {x : x ∈ R, 0 < x ≤ 3}, then supS = 3.

Note: If S is a nonempty, bounded set of real numbers, then S has a unique least upper
bound.

Definition In a neutral geometry, given a line `, a point P , P /∈ `, and D the foot of
the perpendicular from P to `, let

K(P, `) = {r : r ∈ R, r = m(∠DPC) where
−→
PC ∩ ` 6= ∅}.

We call
r(P, `) = supK(P, l)

the critical number for P and `.

Example In the Euclidean Plane, r(P, `) = 90 for all lines ` and points P /∈ `.

Theorem If, in a neutral geometry, P is a point not on line `, D is the foot of the

perpendicular from P to `, and m(∠DPC) ≥ r(P, `), then
−→
PC ∩ ` = ∅. If m(∠DPC) <

r(P, `), then
−→
PC ∩ ` 6= ∅.

Proof Suppose m(∠DPC) = r(P, `) and
−→
PC ∩ ` 6= ∅. Let

−→
PC ∩ ` = {R} and let S be a

point with D − R − S. Then R ∈ int(∠DPS), so m(∠DPS) > r(P, `), contradicting the
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fact that m(∠DPS) ∈ K(P, `) and r(P, `) = sup K(P, `). Note that if B − P − C, then
−→
PB ∩ ` = ∅ since m(∠DPB) ≥ 90. Hence, in fact, if m(∠DPC) = r(P, `), then

←→
PC is

parallel to `.

Now suppose m(∠DPC) > r(P, `). Let E be a point on the same side of
←→
PD as C for

which m(∠DPE) = r(P, `). Then
←→
PE is a parallel to `. Now E ∈ int(∠DPC), so D

and C are on opposite sides of
←→
PE. Hence

−→
PC and ` are on opposite sides of

←→
PE, and so

−→
PC ∩ ` = ∅.

Now suppose m(∠DPC) < r(P, `). Then there exists an s ∈ R and a point F such that

s = m(∠DPF ) and
−→
PF ∩ ` 6= ∅. Let {A} =

−→
PF ∩ `. If A is on the same side of

←→
PD as C,

then C ∈ int(∠DPF ). Hence, by Crossbar,
−→
PC ∩DA 6= ∅, and so

−→
PC ∩ ` 6= ∅. If A and

C are on opposite sides of
←→
PD, let A′ be the point on ` with A−D −A′ and AD ' DA′.

Then 4ADP ' 4A′DP by Side-Angle-Side. In particular, ∠DPA′ ' ∠DPA. Hence

C ∈ int(∠DPA′), and so, as above,
−→
PC ∩A′D 6= ∅. Hence

−→
PC ∩ ` 6= ∅.

Note: We now have, for C /∈
←→
PD,

−→
PC ∩ ` if and only if m(∠DPC) < r(P, `).

Theorem If, in a neutral geometry, ` is a line and P is a point not on `, then there exist
two or more lines through P parallel to ` if and only if r(P, `) < 90.

Proof See homework.

25.2 The critical function

Theorem If, in a neutral geometry, ` and m are lines, P and Q are points, P /∈ `,
Q /∈ m, and d(P, `) = d(Q,m), then r(P, `) = r(Q, `).

Proof The result will follow if we prove that K(P, `) = K(Q,m). Let D be the foot of
the perpendicular from P to ` and F be the foot of the perpendicular from Q to m. Then
PD ' QF . If s ∈ K(P, `), then there exists a point C ∈ ` with m(∠DPC) = s. Let G be
a point on m with DC ' FG. Then 4PDC ' 4QFG by Side-Angle-Side. In particular,
m(∠FQG) = m(∠DPC), so s ∈ K(Q, m). Hence K(P, `) ⊂ K(Q,m). A similar argument
shows that K(Q,m) ⊂ K(P, `), and so K(Q,m) = K(P, `). Thus r(P, `) = r(Q,m).

Definition In a neutral geometry, we call the function Π : (0,∞) → (0, 90] given by

Π(t) = r(P, `),

where ` is a line and P is a point with d(P, `) = t, the critical function.

Definition For the Euclidean Plane, Π(t) = 90 for all 0 < t < ∞.
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Example For the Poincaré Plane, one may show that

Π(t) = tan−1

(
1

sinh(t)

)
.
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Π(t) for the Poincaré Plane

Theorem In a neutral geometry, Π(s) ≤ Π(t) whenever s > t.

Proof Let ` be a line, D ∈ `, and P and Q two points such that Q − P −D,
←→
QD ⊥ `,

QD = s, and PD = t. Let C and E be points on the same side of
←→
PD with m(∠DPC) =

Π(t) and m(∠DQE) = Π(t). Then
←→
PC is parallel to ` and

←→
PC is parallel to

←→
QE (since

←→
QD is a transversal of

←→
PC and

←→
QE with a pair of congruent corresponding angles, and

hence congruent alternating interior angles). Since Q and D are on opposite sides of
←→
PC,

it follows that
←→
QE ∩ ` = ∅. In particular,

−→
QE ∩ ` = ∅, so

Π(s) ≤ m(∠DQE) = Π(t).

Theorem If, in a neutral geometry, Π(a) < 90 for some a ∈ (0,∞), then Π
(

a
2

)
< 90.

Proof Let ` be a line, D ∈ `, P a point with
←→
PD ⊥ ` and PD = a, and Q the midpoint

of PD. Let C be a point with m(∠DPC) = Π(a) and let m be the unique line through Q

perpendicular to
←→
PD.

If
−→
PC ∩m = ∅, then

Π
(a

2

)
= r(P,m) ≤ m(∠QPC) = Π(a) < 90.
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So suppose
−→
PC ∩m = {A}. Let B be a point with P −A−B. Then B ∈ int(∠DQA), so

m(∠DQB) < m(∠DQA) = 90.

Since
−→
PA ∩ ` = ∅, P and B are on the same side of `. Since P −Q−D, P and Q are on

the same side of `. Hence B and Q are on the same side of `, so QB ∩ ` = ∅. If E is a

point with Q − B − E, then Q and E are on opposite sides of
←→
PC. Since P − Q −D, Q

and D are on the same side of
←→
PC. Hence E and D are on opposite sides of

←→
PC. Thus

−→
BE ∩ ` = ∅, and so

−→
QB ∩ ` = ∅. Thus

Π
(a

2

)
= r(Q, `) ≤ m(∠DQB) < 90.

Theorem If, in a neutral geometry, Π(a) < 90 for some a ∈ (0,∞), the Π(t) < 90 for
all t > 0.

Proof Let t ∈ (0,∞). If t ≥ a, then

Π(t) ≤ Π(a) < 90.

If t < a, let n be an integer for which

a

2n
< t.

Then
Π(t) ≤ Π

( a

2n

)
< 90.

All or None Theorem If, in a neutral geometry, there exists a line ` and a point P not
on ` for which there is a unique line through P parallel to `, then the Euclidean Parallel
Property holds.

Definition We say a neutral geometry satisfies the Hyperbolic Parallel Property if for
each line ` and point P /∈ ` there exist two or more lines through P parallel to `.

Definition We call a neutral geometry satisfying the Euclidean Parallel Property a
Euclidean geometry. We call a neutral geometry satisfying the Hyperbolic Parallel Property
a hyperbolic geometry.

Note: A given neutral geometry must be either a Euclidean geometry or a hyperbolic
geometry.


