Lecture 25: The Critical Function

25.1 The critical number

Theorem If, in a neutral geometry, ℓ is a line, P is a point, $P \notin \ell$, D is the foot of the perpendicular from P to ℓ , and C is a point with $m(\angle DPC) \ge 90$, then $\overrightarrow{PC} \cap \ell = \emptyset$.

Proof If $m(\angle DPC) = 90$, then \overrightarrow{PC} is parallel to ℓ . If $m(\angle DBC) > 90$, then let A be a point on the same side of \overrightarrow{PD} as C with $m(\angle DPA) = 90$. Then $A \in int(\angle PDC)$, so D and C lie on opposite sides of \overrightarrow{PA} . Since \overrightarrow{PA} is parallel to ℓ , it follows that $int(\overrightarrow{PC})$ and ℓ are on opposite sides of \overrightarrow{PA} . Hence $\overrightarrow{PC} \cap \ell = \emptyset$.

Definition Given a nonempty set S of real numbers, we call r the supremum, or least upper bound, of S if (1) $s \leq r$ for all $s \in S$, and (2) if t < r, then there exists $s \in S$ such that t < r. The supremum of a set S is denoted either sup S or lub S.

Example If $S = \{x : x \in \mathbb{Q}, x^2 \le 2\}$, then sup $S = \sqrt{2}$.

Example If $S = \{x : x \in \mathbb{R}, 0 < x \le 3\}$, then sup S = 3.

Note: If S is a nonempty, bounded set of real numbers, then S has a unique least upper bound.

Definition In a neutral geometry, given a line ℓ , a point $P, P \notin \ell$, and D the foot of the perpendicular from P to ℓ , let

$$K(P,\ell) = \{r: r \in \mathbb{R}, r = m(\angle DPC) \text{ where } PC \cap \ell \neq \emptyset \}.$$

We call

$$r(P,\ell) = \sup K(P,l)$$

the *critical number* for P and ℓ .

Example In the Euclidean Plane, $r(P, \ell) = 90$ for all lines ℓ and points $P \notin \ell$.

Theorem If, in a neutral geometry, P is a point not on line ℓ , D is the foot of the perpendicular from P to ℓ , and $m(\angle DPC) \ge r(P,\ell)$, then $\overrightarrow{PC} \cap \ell = \emptyset$. If $m(\angle DPC) < r(P,\ell)$, then $\overrightarrow{PC} \cap \ell \neq \emptyset$.

Proof Suppose $m(\angle DPC) = r(P, \ell)$ and $PC \cap \ell \neq \emptyset$. Let $PC \cap \ell = \{R\}$ and let S be a point with D - R - S. Then $R \in int(\angle DPS)$, so $m(\angle DPS) > r(P, \ell)$, contradicting the

fact that $m(\angle DPS) \in K(P,\ell)$ and $r(P,\ell) = \sup K(P,\ell)$. Note that if B - P - C, then $\overrightarrow{PB} \cap \ell = \emptyset$ since $m(\angle DPB) \ge 90$. Hence, in fact, if $m(\angle DPC) = r(P,\ell)$, then \overrightarrow{PC} is parallel to ℓ .

Now suppose $m(\angle DPC) > r(P, \ell)$. Let E be a point on the same side of PD as C for which $m(\angle DPE) = r(P, \ell)$. Then \overrightarrow{PE} is a parallel to ℓ . Now $E \in int(\angle DPC)$, so D and C are on opposite sides of \overrightarrow{PE} . Hence \overrightarrow{PC} and ℓ are on opposite sides of \overrightarrow{PE} , and so $\overrightarrow{PC} \cap \ell = \emptyset$.

Now suppose $m(\angle DPC) < r(P,\ell)$. Then there exists an $s \in \mathbb{R}$ and a point F such that $s = m(\angle DPF)$ and $\overrightarrow{PF} \cap \ell \neq \emptyset$. Let $\{A\} = \overrightarrow{PF} \cap \ell$. If A is on the same side of \overrightarrow{PD} as C, then $C \in \operatorname{int}(\angle DPF)$. Hence, by Crossbar, $\overrightarrow{PC} \cap \overrightarrow{DA} \neq \emptyset$, and so $\overrightarrow{PC} \cap \ell \neq \emptyset$. If A and C are on opposite sides of \overrightarrow{PD} , let A' be the point on ℓ with A - D - A' and $\overrightarrow{AD} \simeq DA'$. Then $\triangle ADP \simeq \triangle A'DP$ by Side-Angle-Side. In particular, $\angle DPA' \simeq \angle DPA$. Hence $C \in \operatorname{int}(\angle DPA')$, and so, as above, $\overrightarrow{PC} \cap \overrightarrow{A'D} \neq \emptyset$. Hence $\overrightarrow{PC} \cap \ell \neq \emptyset$.

Note: We now have, for $C \notin \overrightarrow{PD}$, $\overrightarrow{PC} \cap \ell$ if and only if $m(\angle DPC) < r(P, \ell)$.

Theorem If, in a neutral geometry, ℓ is a line and P is a point not on ℓ , then there exist two or more lines through P parallel to ℓ if and only if $r(P, \ell) < 90$.

Proof See homework.

25.2 The critical function

Theorem If, in a neutral geometry, ℓ and m are lines, P and Q are points, $P \notin \ell$, $Q \notin m$, and $d(P,\ell) = d(Q,m)$, then $r(P,\ell) = r(Q,\ell)$.

Proof The result will follow if we prove that $K(P, \ell) = K(Q, m)$. Let D be the foot of the perpendicular from P to ℓ and F be the foot of the perpendicular from Q to m. Then $\overline{PD} \simeq \overline{QF}$. If $s \in K(P, \ell)$, then there exists a point $C \in \ell$ with $m(\angle DPC) = s$. Let G be a point on m with $\overline{DC} \simeq \overline{FG}$. Then $\triangle PDC \simeq \triangle QFG$ by Side-Angle-Side. In particular, $m(\angle FQG) = m(\angle DPC)$, so $s \in K(Q, m)$. Hence $K(P, \ell) \subset K(Q, m)$. A similar argument shows that $K(Q, m) \subset K(P, \ell)$, and so $K(Q, m) = K(P, \ell)$. Thus $r(P, \ell) = r(Q, m)$.

Definition In a neutral geometry, we call the function $\Pi : (0, \infty) \to (0, 90]$ given by

$$\Pi(t) = r(P, \ell),$$

where ℓ is a line and P is a point with $d(P, \ell) = t$, the critical function.

Definition For the Euclidean Plane, $\Pi(t) = 90$ for all $0 < t < \infty$.

Example For the Poincaré Plane, one may show that

Theorem In a neutral geometry, $\Pi(s) \leq \Pi(t)$ whenever s > t.

Proof Let ℓ be a line, $D \in \ell$, and P and Q two points such that Q - P - D, $\overrightarrow{QD} \perp \ell$, QD = s, and PD = t. Let C and E be points on the same side of \overrightarrow{PD} with $m(\angle DPC) = \Pi(t)$ and $m(\angle DQE) = \Pi(t)$. Then \overrightarrow{PC} is parallel to ℓ and \overrightarrow{PC} is parallel to \overrightarrow{QE} (since \overrightarrow{QD} is a transversal of \overrightarrow{PC} and \overrightarrow{QE} with a pair of congruent corresponding angles, and hence congruent alternating interior angles). Since Q and D are on opposite sides of \overrightarrow{PC} , it follows that $\overrightarrow{QE} \cap \ell = \emptyset$. In particular, $\overrightarrow{QE} \cap \ell = \emptyset$, so

$$\Pi(s) \le m(\angle DQE) = \Pi(t).$$

Theorem If, in a neutral geometry, $\Pi(a) < 90$ for some $a \in (0, \infty)$, then $\Pi\left(\frac{a}{2}\right) < 90$.

Proof Let ℓ be a line, $D \in \ell$, P a point with $PD \perp \ell$ and PD = a, and Q the midpoint of \overline{PD} . Let C be a point with $m(\angle DPC) = \Pi(a)$ and let m be the unique line through Q perpendicular to \overrightarrow{PD} .

If $PC \cap m = \emptyset$, then

$$\Pi\left(\frac{a}{2}\right) = r(P,m) \le m(\angle QPC) = \Pi(a) < 90.$$

So suppose $\overrightarrow{PC} \cap m = \{A\}$. Let B be a point with P - A - B. Then $B \in int(\angle DQA)$, so

$$m(\angle DQB) < m(\angle DQA) = 90.$$

Since $\overrightarrow{PA} \cap \ell = \emptyset$, P and B are on the same side of ℓ . Since P - Q - D, P and Q are on the same side of ℓ . Hence B and Q are on the same side of ℓ , so $\overrightarrow{QB} \cap \ell = \emptyset$. If E is a point with Q - B - E, then Q and E are on opposite sides of \overrightarrow{PC} . Since P - Q - D, Q and D are on the same side of \overrightarrow{PC} . Hence E and D are on opposite sides of \overrightarrow{PC} . Thus $\overrightarrow{BE} \cap \ell = \emptyset$, and so $\overrightarrow{QB} \cap \ell = \emptyset$. Thus

$$\Pi\left(\frac{a}{2}\right) = r(Q,\ell) \le m(\angle DQB) < 90.$$

Theorem If, in a neutral geometry, $\Pi(a) < 90$ for some $a \in (0, \infty)$, the $\Pi(t) < 90$ for all t > 0.

Proof Let $t \in (0, \infty)$. If $t \ge a$, then

$$\Pi(t) \le \Pi(a) < 90.$$

If t < a, let n be an integer for which

$$\frac{a}{2^n} < t$$

Then

$$\Pi(t) \le \Pi\left(\frac{a}{2^n}\right) < 90.$$

All or None Theorem If, in a neutral geometry, there exists a line ℓ and a point P not on ℓ for which there is a unique line through P parallel to ℓ , then the Euclidean Parallel Property holds.

Definition We say a neutral geometry satisfies the *Hyperbolic Parallel Property* if for each line ℓ and point $P \notin \ell$ there exist two or more lines through P parallel to ℓ .

Definition We call a neutral geometry satisfying the Euclidean Parallel Property a *Euclidean geometry*. We call a neutral geometry satisfying the Hyperbolic Parallel Property a *hyperbolic geometry*.

Note: A given neutral geometry must be either a Euclidean geometry or a hyperbolic geometry.