Lecture 24: Saccheri Quadrilaterals

24.1 Saccheri Quadrilaterals

Definition In a protractor geometry, we call a quadrilateral $\square A B C D$ a Saccheri quadrilateral, denoted $\overline{\mathrm{S}} A B C D$, if $\angle A$ and $\angle D$ are right angles and $\overline{A B} \simeq \overline{C D}$. Given $\mathbb{\mathrm { S }} A B C D$, we call $\overline{A D}$ the lower base, $\overline{B C}$ the upper base, $\overline{A B}$ and $\overline{C D}$ the legs, $\angle A$ and $\angle D$ the lower base angles, and $\angle B$ and $\angle C$ the upper base angles.

Theorem A Saccheri quadrilateral is a convex quadrilateral.
Proof Given $\mathbb{S} A B C D, \overleftrightarrow{A D}$ is perpendicular to both $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$. Hence $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are parallel, and so $\Xi A B C D$ is a convex quadrilateral.

Definition Given convex quadrilaterals $\square A B C D$ and $\square P Q R S$, we write $\square A B C D \simeq$ $\square P Q R S$ if $\overline{A B} \simeq \overline{P Q}, \overline{B C} \simeq \overline{Q R}, \overline{C D} \simeq \overline{R A}, \overline{D A} \simeq \overline{S P}, \angle A \simeq \angle P, \angle B \simeq \angle Q$, $\angle C \simeq \angle R$, and $\angle D \simeq \angle S$. We say two convex quadrilaterals are congruent it it is possible to label the vertices of one with A, B, C, and D and the other with P, Q, R, and S in such a way that $\square A B C D \simeq \square P Q R S$.

Theorem If, in a neutral geometry, $\overline{A D} \simeq \overline{P S}$ and $\overline{A B} \simeq \overline{P Q}$, then $\mathrm{S} A B C D \simeq$ $\triangle P Q R S$.

Proof See homework.

Theorem Given $\mathbb{S} A B C D$ in a neutral geometry, $\mathbb{S} A B C D \simeq D C B A$. In particular, $\angle B \simeq \angle C$.

Proof See homework.

Polygon Inequality If $P_{1}, P_{2}, \ldots, P_{n}$ are points in a neutral geometry, then

$$
P_{1} P_{n} \leq P_{1} P_{2}+P_{2} P_{3}+\cdots P_{n-1} P_{n} .
$$

Proof The result is the Triangle Inequality for $n=3$. For $n=4$,

$$
P_{1} P_{3} \leq P_{1} P_{2}+P_{2} P_{3},
$$

and

$$
P_{1} P_{4} \leq P_{1} P_{3}+P_{3} P_{4},
$$

so

$$
P_{1} P_{4} \leq P_{1} P_{2}+P_{2} P_{3}+P_{3} P_{4} .
$$

The result follows from repeating the process.
Theorem Given $\mathrm{S} A B C D$ in a neutral geometry, $\overline{B C} \geq \overline{A D}$.
Proof Let $A_{1}=A, B_{1}=B, A_{2}=D$, and $B_{2}=C_{2}$. For each $k>2$, let A_{k} be the unique point on $\overleftrightarrow{A D}$ such that $A_{k-2}-A_{k-1}-A_{k}$ and $\overline{A_{k-1} A_{k}} \simeq \overline{A D}$, and let B_{k} be the unique point on the same side of $\overleftrightarrow{A D}$ as B with ${\overrightarrow{A_{k} B_{k}}}^{\perp} \overleftrightarrow{A D}$ and $\overline{A_{k} B_{k}} \simeq \overline{B A}$. Then $\mathrm{S} A B C D \simeq \mathrm{~S} A_{k} B_{k} A_{k+1} B_{k+1}$ for $k=1,2,3, \ldots$

Hence, for any $n \geq 1$,

$$
A_{1} A_{n+1} \leq A_{1} B_{1}+B_{1} B_{2}+B_{2} B_{3}+\cdots+B_{n} B_{n+1}+B_{n+1} A_{n+1}
$$

and so

$$
n A D \leq 2 A B+n B C
$$

for every $n \geq 1$. That is,

$$
A D-B C \leq \frac{2}{n} A B
$$

for every $n \geq 2$. Thus we must have $A D-B C \leq 0$, so $\overline{A D} \leq \overline{B C}$.
Theorem Given $\mathbb{B} A B C D$ in a neutral geometry, $\angle A B D<\angle B D C$.
Proof See homework.
Theorem In a neutral geometry, the sum of the measures of the acute angles of a right triangle is less than or equal to 90 .

Proof Let $\triangle A B D$ be a right triangle with right angle at A. Let C be the unique point on the same side of $\overleftrightarrow{A D}$ as B with $\overleftrightarrow{C D} \perp \overleftrightarrow{A D}$ and $\overline{A B} \simeq \overline{C D}$. Then $\mathbb{S} A B C D$, and so

$$
m(\angle A B D)+m(\angle A D B) \leq m(\angle B D C)+m(\angle A D B)
$$

Now $B \in \operatorname{int}(\angle A D C)$ (since $\mathbb{S} A B C D$ is a convex quadrilateral), so

$$
m(\angle B D C)+m(\angle A D B)=m(\angle A D C)=90
$$

Hence

$$
m(\angle A B D)+m(\angle A D B) \leq 90
$$

Saccheri's Theorem Given $\triangle A B C$ in a neutral geometry,

$$
m(\angle A)+m(\angle B)+m(\angle C) \leq 180
$$

Proof Suppose $\overline{A C}$ is a longest side $\triangle A B C$ and let D be the foot of the perpendicular from B to $\overleftrightarrow{A C}$. Then $A-D-C$ and $D \in \operatorname{int}(\angle A B C)$. Hence

$$
\begin{aligned}
m(\angle C A B)+m(\angle A B C)+m(\angle B C A)= & m(\angle D A B)+m(\angle A B D) \\
& +m(\angle D B C)+m(\angle B C D) \\
\leq & 90
\end{aligned}+90=180 . ~ \$
$$

Theorem Given $\triangle A B C$ in a neutral geometry which also satisfies the Euclidean Parallel Property,

$$
m(\angle A)+m(\angle B)+m(\angle C)=180
$$

Proof Let ℓ be the unique line through B parallel to $\overleftrightarrow{A C}$ and let D and E be points with $D-B-E$ and A and D on the same side of $\overleftrightarrow{B C}$. Then $\angle D B A$ and $\angle B A C$ are alternate interior angles, and hence congruent, as are $\angle E B C$ and $\angle A C B$.

Now $A \in \operatorname{int}(\angle D B C)$, so

$$
m(\angle D B A)+m(\angle A B C)=m(\angle D B C)
$$

Hence

$$
\begin{aligned}
m(\angle C A B)+m(\angle A B C)+m(\angle B C A) & =m(\angle D B A)+m(\angle A B C)+m(\angle E B C) \\
& =m(\angle D B C)+m(\angle E B C)=180 .
\end{aligned}
$$

Definition We call $\square A B C D$ a parallelogram if $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$ and $\overleftrightarrow{A D} \| \overleftrightarrow{B C}$. We call $\square A B C D$ a rectangle if all four angles are right angles, and we call $\square A B C D$ a square if it is a rectangle and

$$
\overline{A B} \simeq \overline{B C} \simeq \overline{C D} \simeq \overline{D A}
$$

Theorem Given $\mathbb{S} A B C D$ in a neutral geometry with M the midpoint of $\overline{A D}$ and N the midpoint of $\overline{B C}$, then $\overleftrightarrow{M N} \perp \overleftrightarrow{A D}$ and $\overleftrightarrow{M N} \perp \overleftrightarrow{B C}$.

Proof See homework
Theorem In a neutral geometry, a Saccheri quadrilateral is a parallelogram.
Theorem If, in a neutral geometry, $\square A B C D$ has right angles at A and D and $\overline{A B}>\overline{D C}$, then $\angle A B C<\angle D C B$.

Proof Let E be point on $\overrightarrow{D C}$ so that $D-C-E$ and $\overline{D E} \simeq \overrightarrow{A B}$. Then $\bar{S} A B E D$, so $\angle A B E \simeq \angle D E B$. Now $\angle D C B$ is an exterior angle of $\triangle B E C$, so $\angle D C B>\angle D E B$. Moreover, $C \in \operatorname{int}(\angle A B E)$, so $\angle A B C<\angle A B E$. Thus $\angle A B C<\angle D C B$.

Theorem If, in a neutral geometry, $\square A B C D$ has right angles at A and D, then (1) $\overline{A B}>\overline{C D}$ if and only if $\angle A B C<\angle D C B$, (2) $\overline{A B} \simeq \overline{C D}$ if and only if $\angle A B C \simeq \angle D C B$, and (3) $\overline{A B}<\overline{C D}$ if and only if $\angle A B C>\angle D C B$.

Proof See homework.
Definition We say a set of points \mathcal{S} in a neutral geometry $\{\mathcal{P}, \mathcal{L}, d, m\}$ is equidistant from a line ℓ if $d(P, \ell)=d(Q, \ell)$ for all $P, Q \in \mathcal{S}$.

Giordano's Theorem If, in a neutral geometry, ℓ and m are lines and A, B, and C are points on ℓ such that

$$
d(A, m)=d(B, m)=d(C, m)
$$

then ℓ is equidistant from m.
Proof We may assume $\ell \neq m$. At least two of A, B, and C lie on one side of m; suppose A and B lie on the same side of m. If D is the foot of the perpendicular from A to m and E is the foot of the perpendicular from B to m, then $\triangle D A B E$, so $\overleftrightarrow{A B}=\ell$ is parallel to m. Hence C lies on the same side of m as A and B. Let F be the foot of the perpendicular from C to m.

Suppose $A-B-C$. Then we have $\mathbb{S} D A B E$, $\mathbb{D} D A C F$, and $\mathbb{\Phi} E B C F$. Hence

$$
\angle A B E \simeq \angle B A D \simeq B C F \simeq \angle C B E .
$$

Since $\angle A B E$ and $\angle C B E$ form a linear pair, it follows that $\angle A B E$ is a right angle, and hence all three Saccheri quadrilaterals are in fact rectangles.

Given $P \in \ell$, other than A, B, or C, we need to show $d(P, m)=A D$. Let S be the foot of the perpendicular from P to m. First suppose P lies between A and C. If $\overleftrightarrow{P S} \perp \ell$, then $\angle A P S \simeq \angle P A D$, and so $P S=A D$. If $\overleftrightarrow{P S}$ is not perpendicular to ℓ, then one of $\angle A P S$ and $\angle C P S$ is acute. Suppose $\angle A P S$ is acute and $\angle C P S$ is obtuse. Then $A D<P S<C F$, contradicting the assumption that $A D=C F$. Hence $\overleftrightarrow{P S} \perp \ell$, and $d(P, m)=d(A, m)$.

Finally, suppose $P \notin \overline{A C}$. Let Q be the point on ℓ such that $P-A-Q$ and $\overline{A Q} \simeq \overline{P A}$ and let T be the foot of the perpendicular from Q to m. Now $\triangle P A D \simeq \triangle Q A D$ by Side-Angle-Side and $\triangle P D S \simeq Q D T$ by Hypotenuse-Angle. Hence $P S=Q T$. Similarly, we may find point R on ℓ such that $P-C-R$ and $\overline{P C} \simeq \overline{C R}$. If U is the foot of the perpendicular from R to m, then, using the same argument, $P S=R U$. Hence

$$
d(P, m)=d(Q, m)=d(R, m)
$$

Since $P-A-Q$, it follows from above that $P S=A D$. Hence $d(P, m)=d(A, m)$, and ℓ is equidistant from m.

