Lecture 24: Saccheri Quadrilaterals

24.1 Saccheri Quadrilaterals

Definition In a protractor geometry, we call a quadrilateral $\Box ABCD$ a Saccheri quadrilateral, denoted $\Box ABCD$, if $\angle A$ and $\angle D$ are right angles and $\overline{AB} \simeq \overline{CD}$. Given $\Box ABCD$, we call \overline{AD} the lower base, \overline{BC} the upper base, \overline{AB} and \overline{CD} the legs, $\angle A$ and $\angle D$ the lower base angles, and $\angle B$ and $\angle C$ the upper base angles.

Theorem A Saccheri quadrilateral is a convex quadrilateral.

Proof Given $\mathbb{S}ABCD$, \overrightarrow{AD} is perpendicular to both \overrightarrow{AB} and \overrightarrow{CD} . Hence \overrightarrow{AB} and \overrightarrow{CD} are parallel, and so $\mathbb{S}ABCD$ is a convex quadrilateral.

Definition Given convex quadrilaterals $\Box ABCD$ and $\Box PQRS$, we write $\Box ABCD \simeq \Box PQRS$ if $\overline{AB} \simeq \overline{PQ}$, $\overline{BC} \simeq \overline{QR}$, $\overline{CD} \simeq \overline{RA}$, $\overline{DA} \simeq \overline{SP}$, $\angle A \simeq \angle P$, $\angle B \simeq \angle Q$, $\angle C \simeq \angle R$, and $\angle D \simeq \angle S$. We say two convex quadrilaterals are *congruent* it it is possible to label the vertices of one with A, B, C, and D and the other with P, Q, R, and S in such a way that $\Box ABCD \simeq \Box PQRS$.

Theorem If, in a neutral geometry, $\overline{AD} \simeq \overline{PS}$ and $\overline{AB} \simeq \overline{PQ}$, then $\mathbb{S}ABCD \simeq \mathbb{S}PQRS$.

Proof See homework.

Theorem Given $\mathbb{S}ABCD$ in a neutral geometry, $\mathbb{S}ABCD \simeq DCBA$. In particular, $\angle B \simeq \angle C$.

Proof See homework.

Polygon Inequality If P_1, P_2, \ldots, P_n are points in a neutral geometry, then

$$P_1P_n \le P_1P_2 + P_2P_3 + \cdots + P_{n-1}P_n.$$

Proof The result is the Triangle Inequality for n = 3. For n = 4,

$$P_1 P_3 \le P_1 P_2 + P_2 P_3,$$

and

$$P_1 P_4 \le P_1 P_3 + P_3 P_4,$$

 \mathbf{SO}

 $P_1P_4 \le P_1P_2 + P_2P_3 + P_3P_4.$

The result follows from repeating the process.

Theorem Given $\mathbb{S}ABCD$ in a neutral geometry, $\overline{BC} \ge \overline{AD}$.

Proof Let $A_1 = A$, $B_1 = B$, $A_2 = D$, and $B_2 = C_2$. For each k > 2, let A_k be the unique point on \overrightarrow{AD} such that $A_{k-2} - A_{k-1} - A_k$ and $\overline{A_{k-1}A_k} \simeq \overline{AD}$, and let B_k be the unique point on the same side of \overrightarrow{AD} as B with $\overrightarrow{A_kB_k} \perp \overrightarrow{AD}$ and $\overline{A_kB_k} \simeq \overline{BA}$. Then $\mathbb{S}|ABCD \simeq \mathbb{S}|A_kB_kA_{k+1}B_{k+1}$ for $k = 1, 2, 3, \ldots$

Hence, for any $n \ge 1$,

$$A_1A_{n+1} \le A_1B_1 + B_1B_2 + B_2B_3 + \dots + B_nB_{n+1} + B_{n+1}A_{n+1},$$

and so

$$nAD \le 2AB + nBC$$

for every $n \ge 1$. That is,

$$AD - BC \le \frac{2}{n}AB$$

for every $n \ge 2$. Thus we must have $AD - BC \le 0$, so $\overline{AD} \le \overline{BC}$.

Theorem Given $\mathbb{S}ABCD$ in a neutral geometry, $\angle ABD < \angle BDC$.

Proof See homework.

Theorem In a neutral geometry, the sum of the measures of the acute angles of a right triangle is less than or equal to 90.

Proof Let $\triangle ABD$ be a right triangle with right angle at A. Let C be the unique point on the same side of \overrightarrow{AD} as B with $\overrightarrow{CD} \perp \overrightarrow{AD}$ and $\overrightarrow{AB} \simeq \overrightarrow{CD}$. Then $\mathbb{S}ABCD$, and so

$$m(\angle ABD) + m(\angle ADB) \le m(\angle BDC) + m(\angle ADB).$$

Now $B \in int(\angle ADC)$ (since $\mathbb{S}ABCD$ is a convex quadrilateral), so

$$m(\angle BDC) + m(\angle ADB) = m(\angle ADC) = 90.$$

Hence

$$m(\angle ABD) + m(\angle ADB) \le 90.$$

Saccheri's Theorem Given $\triangle ABC$ in a neutral geometry,

$$m(\angle A) + m(\angle B) + m(\angle C) \le 180.$$

Proof Suppose \overline{AC} is a longest side $\triangle ABC$ and let D be the foot of the perpendicular from B to \overrightarrow{AC} . Then A - D - C and $D \in int(\angle ABC)$. Hence

$$\begin{split} m(\angle CAB) + m(\angle ABC) + m(\angle BCA) &= m(\angle DAB) + m(\angle ABD) \\ &+ m(\angle DBC) + m(\angle BCD) \\ &\leq 90 + 90 = 180. \end{split}$$

Theorem Given $\triangle ABC$ in a neutral geometry which also satisfies the Euclidean Parallel Property,

$$m(\angle A) + m(\angle B) + m(\angle C) = 180.$$

Proof Let ℓ be the unique line through *B* parallel to \overrightarrow{AC} and let *D* and *E* be points with D - B - E and *A* and *D* on the same side of \overrightarrow{BC} . Then $\angle DBA$ and $\angle BAC$ are alternate interior angles, and hence congruent, as are $\angle EBC$ and $\angle ACB$.

Now $A \in int(\angle DBC)$, so

$$m(\angle DBA) + m(\angle ABC) = m(\angle DBC).$$

Hence

$$\begin{split} m(\angle CAB) + m(\angle ABC) + m(\angle BCA) &= m(\angle DBA) + m(\angle ABC) + m(\angle EBC) \\ &= m(\angle DBC) + m(\angle EBC) = 180. \end{split}$$

Definition We call $\Box ABCD$ a *parallelogram* if $AB \parallel CD$ and $AD \parallel BC$. We call $\Box ABCD$ a *rectangle* if all four angles are right angles, and we call $\Box ABCD$ a *square* if it is a rectangle and

$$\overline{AB} \simeq \overline{BC} \simeq \overline{CD} \simeq \overline{DA}.$$

Theorem Given $\mathbb{S}ABCD$ in a neutral geometry with M the midpoint of \overline{AD} and N the midpoint of \overline{BC} , then $\overrightarrow{MN} \perp \overrightarrow{AD}$ and $\overrightarrow{MN} \perp \overrightarrow{BC}$.

Proof See homework

Theorem In a neutral geometry, a Saccheri quadrilateral is a parallelogram.

Theorem If, in a neutral geometry, $\Box ABCD$ has right angles at A and D and $\overline{AB} > \overline{DC}$, then $\angle ABC < \angle DCB$.

Proof Let *E* be point on *DC* so that D - C - E and $\overline{DE} \simeq \overline{AB}$. Then $\mathbb{S} | ABED$, so $\angle ABE \simeq \angle DEB$. Now $\angle DCB$ is an exterior angle of $\triangle BEC$, so $\angle DCB > \angle DEB$. Moreover, $C \in \operatorname{int}(\angle ABE)$, so $\angle ABC < \angle ABE$. Thus $\angle ABC < \angle DCB$.

Theorem If, in a neutral geometry, $\Box ABCD$ has right angles at A and D, then (1) $\overline{AB} > \overline{CD}$ if and only if $\angle ABC < \angle DCB$, (2) $\overline{AB} \simeq \overline{CD}$ if and only if $\angle ABC \simeq \angle DCB$, and (3) $\overline{AB} < \overline{CD}$ if and only if $\angle ABC > \angle DCB$.

Proof See homework.

Definition We say a set of points S in a neutral geometry $\{\mathcal{P}, \mathcal{L}, d, m\}$ is equidistant from a line ℓ if $d(P, \ell) = d(Q, \ell)$ for all $P, Q \in S$.

Giordano's Theorem If, in a neutral geometry, ℓ and m are lines and A, B, and C are points on ℓ such that

$$d(A,m) = d(B,m) = d(C,m),$$

then ℓ is equidistant from m.

Proof We may assume $\ell \neq m$. At least two of A, B, and C lie on one side of m; suppose A and B lie on the same side of m. If D is the foot of the perpendicular from A to m and E is the foot of the perpendicular from B to m, then $\mathbb{S}|DABE$, so $\overrightarrow{AB} = \ell$ is parallel to m. Hence C lies on the same side of m as A and B. Let F be the foot of the perpendicular from C to m.

Suppose A - B - C. Then we have $\mathbb{S}DABE$, $\mathbb{S}DACF$, and $\mathbb{S}EBCF$. Hence

 $\angle ABE \simeq \angle BAD \simeq BCF \simeq \angle CBE.$

Since $\angle ABE$ and $\angle CBE$ form a linear pair, it follows that $\angle ABE$ is a right angle, and hence all three Saccheri quadrilaterals are in fact rectangles.

Given $P \in \ell$, other than A, B, or C, we need to show d(P, m) = AD. Let S be the foot of the perpendicular from P to m. First suppose P lies between A and C. If $\overrightarrow{PS} \perp \ell$, then $\angle APS \simeq \angle PAD$, and so PS = AD. If \overrightarrow{PS} is not perpendicular to ℓ , then one of $\angle APS$ and $\angle CPS$ is acute. Suppose $\angle APS$ is acute and $\angle CPS$ is obtuse. Then AD < PS < CF, contradicting the assumption that AD = CF. Hence $\overrightarrow{PS} \perp \ell$, and d(P, m) = d(A, m).

Finally, suppose $P \notin \overline{AC}$. Let Q be the point on ℓ such that P - A - Q and $\overline{AQ} \simeq \overline{PA}$ and let T be the foot of the perpendicular from Q to m. Now $\triangle PAD \simeq \triangle QAD$ by Side-Angle-Side and $\triangle PDS \simeq QDT$ by Hypotenuse-Angle. Hence PS = QT. Similarly, we may find point R on ℓ such that P - C - R and $\overline{PC} \simeq \overline{CR}$. If U is the foot of the perpendicular from R to m, then, using the same argument, PS = RU. Hence

$$d(P,m) = d(Q,m) = d(R,m).$$

Since P - A - Q, it follows from above that PS = AD. Hence d(P, m) = d(A, m), and ℓ is equidistant from m.