Lecture 23: Parallel Lines

23.1 Transversals

Definition Given distinct lines ℓ , m, and n, we say a line ℓ is a *transversal* of m and n if $\ell \cap m \neq \emptyset$, $\ell \cap n \neq \emptyset$, and $\ell \cap m \neq \ell \cap n$.

Definition Suppose \overrightarrow{GH} is a transversal of \overrightarrow{AC} and \overrightarrow{DF} in a Pasch geometry with $\overrightarrow{GH} \cap \overrightarrow{AC} = \{B\}$ and $\overrightarrow{GH} \cap \overrightarrow{DF} = \{E\}$. Moreover, suppose A - B - C, D - E - F, G - B - E - H, and A and D are on the same side of \overrightarrow{GH} . Then we call $\angle ABE$ and FEB a pair of alternate interior angles and we call $\angle ABG$ and $\angle DEB$ a pair of corresponding angles.

Note: In the preceding definition, $\angle DEB$ and $\angle CBE$ are also alternate interior angles, and $\angle CBG$ and $\angle FEB$, $\angle ABE$ and $\angle DEH$, and $\angle CBE$ and $\angle FEH$ are pairs of corresponding angles.

Theorem If, in a neutral geometry, ℓ is a transversal of lines m and n with a pair of alternate interior angles congruent, then there exists a line ℓ' which is perpendicular to both m and n.

Proof Suppose $m = \overleftrightarrow{AC}$, $n = \overleftrightarrow{DF}$, $\ell = \overleftrightarrow{GH}$, $m \cap \ell = \{B\}$, $n \cap \ell = \{E\}$, A - B - C, D - E - F, G - B - E - H, and A and D are on the same side of \overleftrightarrow{GH} . If the congruent alternate interior angles are right angles, then we can let $\ell' = \ell$. Otherwise, we may select a pair of congruent alternate interior angles which are acute.

So suppose $\angle ABE \simeq \angle FEB$ and $\angle ABE$ is acute. Let M be the midpoint of \overline{EB} , let P be the foot of the perpendicular from M to \overrightarrow{AC} , and let Q be the foot of the perpendicular from M to \overrightarrow{DF} . Since $\angle ABM$ and $\angle FEM$ are acute, A and P lie on the same side of \overrightarrow{GH} and Q and F lie on the same side of \overrightarrow{GH} (see homework). Hence P and Q are on opposite sides of \overrightarrow{GH} . We need to show that $\overrightarrow{PM} = \overrightarrow{QM}$.

Now $\triangle MBP \simeq \triangle MEQ$ by Hypotenuse-Angle. In particular, $\angle BMP \simeq \angle EMQ$. Now if $R \in \overrightarrow{PM}$ with P - M - R, then $\angle BMP \simeq \angle EMR$ (since they are vertical angles). Hence $\angle EMQ \simeq \angle EMR$. Since Q and R are on the same side of \overrightarrow{GH} , $Q \in \overrightarrow{MR}$. Hence $\overrightarrow{PM} = \overrightarrow{MQ}$, and we may let $\ell' = \overrightarrow{PQ}$.

23.2 Parallel lines

Theorem If, in a neutral geometry, ℓ , m, and n are distinct lines with $n \perp \ell$ and $n \perp m$, then ℓ and m are parallel.

Proof Let $n \cap \ell = \{P\}$, $n \cap m = \{Q\}$. If $\ell \cap m = \{R\}$, then $\triangle PQR$ would have two right angles. Hence $\ell \cap m = \emptyset$, that is, ℓ and m are parallel.

Theorem If, in a neutral geometry, lines ℓ and m have a transversal with congruent alternate interior angles, then ℓ and m are parallel.

Note that in the Poincaré Plane, the lines $_0L$ and $_1L_1$ are parallel but do not have a common perpendicular

Theorem If, in a neutral geometry, P is a point, ℓ is a line, and $P \notin \ell$, then there exists a line through P parallel to ℓ .

Proof Let Q be the foot of the perpendicular from P to ℓ and let m be the unique line through P perpendicular to \overrightarrow{PQ} . Then $\overrightarrow{PQ} \perp m$ and $\overrightarrow{PQ} \perp \ell$, and so m and ℓ are parallel.

23.3 Euclid's parallel postulate

Definition We say a protractor geometry $\{\mathcal{P}, \mathcal{L}, d, m\}$ satisfies *Euclid's Fifth Postulate* (EFP) if whenever \overrightarrow{BC} is a transversal of \overrightarrow{AB} and \overrightarrow{CD} with A and D on the same side of \overrightarrow{BC} and $m(\angle ABC) + m(\angle (BCD) < 180$, then \overrightarrow{AB} and \overrightarrow{CD} intersect at a point E on the same side of \overrightarrow{BC} as A and D.

Theorem If, in a neutral geometry which also satisfies Euclid's Fifth Postulate, P is a point, ℓ is a line, and $P \notin \ell$, then there exists a unique line through P parallel to ℓ .

Proof Let Q be the foot of the perpendicular from P to ℓ and let m be the unique line through P perpendicular to \overrightarrow{PQ} . Then m is parallel to ℓ , as above. Now suppose \overrightarrow{AB} is another line through P. Since \overrightarrow{AB} is not perpendicular to \overrightarrow{PQ} , one of $\angle APQ$ or $\angle BPQ$ is acute. Since \overrightarrow{PQ} is perpendicular to ℓ , Euclid's Fifth Postulate implies that $\overrightarrow{AB} \cap \ell \neq \emptyset$.

Definition We say an incidence geometry satisfies the *Euclidean Parallel Property*, denoted EPP, or *Playfair's Parallel Postulate*, if for any line ℓ and any point P there exists a unique line through P parallel to ℓ .

We have already seen that if a neutral geometry satisfies Euclid's Fifth Postulate, then it satisfies the Euclidean Parallel Property. The next theorem says these axioms are equivalent.

Theorem A neutral geometry which satisfies the Euclidean Parallel Property also satisfies Euclid's Fifth Postulate.

Proof Let \overrightarrow{BC} be a transversal of \overrightarrow{AB} and \overrightarrow{CD} with A and D on the same side of \overrightarrow{BC} and $m(\angle ABC) + m(\angle BCD) < 180$. Let E be a point on the same side of \overrightarrow{BC} as A such that $\angle EBC$ and $\angle BCD$ are supplementary. Let F be a point with F - B - E. Then $\angle FBC$ and $\angle EBC$ are a linear pair, hence supplementary, and so $\angle FBC \simeq \angle BCD$. Hence \overrightarrow{BE} and \overrightarrow{CD} are parallel. Since $\overrightarrow{BA} \neq \overrightarrow{BE}$, it follows that \overrightarrow{AB} is not parallel to \overrightarrow{CD} . Hence $\overrightarrow{AB} \cap \overrightarrow{CD} \neq \emptyset$. It remains to show that $\overrightarrow{BA} \cap \overrightarrow{CD} \neq \emptyset$.

Now $\angle CBA < \angle CBE$, so $A \in \operatorname{int}(\angle CBE)$. In particular, A and C are on the same side of \overrightarrow{BE} . Hence $\operatorname{int}(\overrightarrow{BA})$ and \overrightarrow{CD} are on the same side of \overrightarrow{BE} . Thus $\overrightarrow{BA} \cap \overrightarrow{CD} \neq \emptyset$. Finally, since $\operatorname{int}(\overrightarrow{BA})$ and $\operatorname{int}(\overrightarrow{CD})$ lie on the same side of \overrightarrow{BC} , we must have $\overrightarrow{BA} \cap \overrightarrow{CD} \neq \emptyset$.