Lecture 23: Parallel Lines

23.1 Transversals

Definition Given distinct lines ℓ, m, and n, we say a line ℓ is a transversal of m and n if $\ell \cap m \neq \emptyset, \ell \cap n \neq \emptyset$, and $\ell \cap m \neq \ell \cap n$.

Definition Suppose $\overleftrightarrow{G H}$ is a transversal of $\overleftrightarrow{A C}$ and $\overleftrightarrow{D F}$ in a Pasch geometry with $\overleftrightarrow{G H} \cap \overleftrightarrow{A C}=\{B\}$ and $\overleftrightarrow{G H} \cap \overleftrightarrow{D F}=\{E\}$. Moreover, suppose $A-B-C, D-E-F$, $G-B-E-H$, and A and D are on the same side of $\overleftrightarrow{G H}$. Then we call $\angle A B E$ and $F E B$ a pair of alternate interior angles and we call $\angle A B G$ and $\angle D E B$ a pair of corresponding angles.

Note: In the preceding definition, $\angle D E B$ and $\angle C B E$ are also alternate interior angles, and $\angle C B G$ and $\angle F E B, \angle A B E$ and $\angle D E H$, and $\angle C B E$ and $\angle F E H$ are pairs of corresponding angles.

Theorem If, in a neutral geometry, ℓ is a transversal of lines m and n with a pair of alternate interior angles congruent, then there exists a line ℓ^{\prime} which is perpendicular to both m and n.

Proof Suppose $m=\overleftrightarrow{A C}, n=\overleftrightarrow{D F}, \ell=\overleftrightarrow{G H}, m \cap \ell=\{B\}, n \cap \ell=\{E\}, A-B-C$, $D-E-F, G-B-E-H$, and A and D are on the same side of $\overleftrightarrow{G H}$. If the congruent alternate interior angles are right angles, then we can let $\ell^{\prime}=\ell$. Otherwise, we may select a pair of congruent alternate interior angles which are acute.

So suppose $\angle A B E \simeq \angle F E B$ and $\angle A B E$ is acute. Let M be the midpoint of $\overline{E B}$, let P be the foot of the perpendicular from M to $\overleftrightarrow{A C}$, and let Q be the foot of the perpendicular from M to $\overleftrightarrow{D F}$. Since $\angle A B M$ and $\angle F E M$ are acute, A and P lie on the same side of $\overleftrightarrow{G H}$ and Q and F lie on the same side of $\overleftrightarrow{G H}$ (see homework). Hence P and Q are on opposite sides of $\overleftrightarrow{G H}$. We need to show that $\overleftrightarrow{P M}=\overleftrightarrow{Q M}$.

Now $\triangle M B P \simeq \triangle M E Q$ by Hypotenuse-Angle. In particular, $\angle B M P \simeq \angle E M Q$. Now if $R \in \overleftrightarrow{P M}$ with $P-M-R$, then $\angle B M P \simeq \angle E M R$ (since they are vertical angles). Hence $\angle E M Q \simeq \angle E M R$. Since Q and R are on the same side of $\overleftrightarrow{G H}, Q \in \overrightarrow{M R}$. Hence $\overleftrightarrow{P M}=\overleftrightarrow{M Q}$, and we may let $\ell^{\prime}=\overleftrightarrow{P Q}$

23.2 Parallel lines

Theorem If, in a neutral geometry, ℓ, m, and n are distinct lines with $n \perp \ell$ and $n \perp m$, then ℓ and m are parallel.

Proof Let $n \cap \ell=\{P\}, n \cap m=\{Q\}$. If $\ell \cap m=\{R\}$, then $\triangle P Q R$ would have two right angles. Hence $\ell \cap m=\emptyset$, that is, ℓ and m are parallel.

Theorem If, in a neutral geometry, lines ℓ and m have a transversal with congruent alternate interior angles, then ℓ and m are parallel.

Note that in the Poincaré Plane, the lines ${ }_{0} L$ and ${ }_{1} L_{1}$ are parallel but do not have a common perpendicular

Theorem If, in a neutral geometry, P is a point, ℓ is a line, and $P \notin \ell$, then there exists a line through P parallel to ℓ.

Proof Let Q be the foot of the perpendicular from P to ℓ and let m be the unique line through P perpendicular to $\overleftrightarrow{P Q}$. Then $\overleftrightarrow{P Q} \perp m$ and $\overleftrightarrow{P Q} \perp \ell$, and so m and ℓ are parallel

23.3 Euclid's parallel postulate

Definition We say a protractor geometry $\{\mathcal{P}, \mathcal{L}, d, m\}$ satisfies Euclid's Fifth Postulate (EFP) if whenever $\overleftrightarrow{B C}$ is a transversal of $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ with A and D on the same side of $\overleftrightarrow{B C}$ and $m(\angle A B C)+m(\angle(B C D)<180$, then $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersect at a point E on the same side of $\overleftrightarrow{B C}$ as A and D.

Theorem If, in a neutral geometry which also satisfies Euclid's Fifth Postulate, P is a point, ℓ is a line, and $P \notin \ell$, then there exists a unique line through P parallel to ℓ.

Proof Let Q be the foot of the perpendicular from P to ℓ and let m be the unique line through P perpendicular to $\overleftrightarrow{P Q}$. Then m is parallel to ℓ, as above. Now suppose $\overleftrightarrow{A B}$ is another line through P. Since $\overleftrightarrow{A B}$ is not perpendicular to $\overleftrightarrow{P Q}$, one of $\angle A P Q$ or $\angle B P Q$ is acute. Since $\overleftrightarrow{P Q}$ is perpendicular to ℓ, Euclid's Fifth Postulate implies that $\overleftrightarrow{A B} \cap \ell \neq \emptyset$.

Definition We say an incidence geometry satisfies the Euclidean Parallel Property, denoted EPP, or Playfair's Parallel Postulate, if for any line ℓ and any point P there exists a unique line through P parallel to ℓ.

We have already seen that if a neutral geometry satisfies Euclid's Fifth Postulate, then it satisfies the Euclidean Parallel Property. The next theorem says these axioms are equivalent.

Theorem A neutral geometry which satisfies the Euclidean Parallel Property also satisfies Euclid's Fifth Postulate.

Proof Let $\overleftrightarrow{B C}$ be a transversal of $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ with A and D on the same side of $\overleftrightarrow{B C}$ and $m(\angle A B C)+m(\angle B C D)<180$. Let E be a point on the same side of $\overleftrightarrow{B C}$ as A such that $\angle E B C$ and $\angle B C D$ are supplementary. Let F be a point with $F-B-E$. Then $\angle F B C$ and $\angle E B C$ are a linear pair, hence supplementary, and so $\angle F B C \simeq \angle B C D$. Hence $\overleftrightarrow{B E}$ and $\overleftrightarrow{C D}$ are parallel. Since $\overrightarrow{B A} \neq \overrightarrow{B E}$, it follows that $\overleftrightarrow{A B}$ is not parallel to $\overleftrightarrow{C D}$. Hence $\overleftrightarrow{A B} \cap \overleftrightarrow{C D} \neq \emptyset$. It remains to show that $\overrightarrow{B A} \cap \overrightarrow{C D} \neq \emptyset$.

Now $\angle C B A<\angle C B E$, so $A \in \operatorname{int}(\angle C B E)$. In particular, A and C are on the same side of $\overleftrightarrow{B E}$. Hence $\operatorname{int}(\overrightarrow{B A})$ and $\overleftrightarrow{C D}$ are on the same side of $\overleftrightarrow{B E}$. Thus $\overrightarrow{B A} \cap \overleftrightarrow{C D} \neq \emptyset$. Finally, since $\operatorname{int}(\overrightarrow{B A})$ and $\operatorname{int}(\overrightarrow{C D})$ lie on the same side of $\overleftrightarrow{B C}$, we must have $\overrightarrow{B A} \cap \overrightarrow{C D} \neq \emptyset$.

