Lecture 22: Circles

22.1 Circles

Definition Given a point C' in a metric geometry {P, L, d} and real number r > 0, we
call

C.(C)={P:PecP,PC=r}

a circle with center C' and radius r. If A,B € C.(C), we call AB a chord of C-(C); if
C € AB, and AB is a chord, we call AB a diameter of C.(C). If P € C,.(C), we call PC a
radius segment of C,.(C).

Example In the Poincaré Plane, if C' = (a,b), then

C(C) = {(z,y) : (z,y) € R?, (z — a)* 4 (y — beosh(r))? = b sinh?®(r)}.

Theorem If, in a neutral geometry, AB is a chord of C,.(C) and / is the perpendicular
bisector of AB, then C € /.

Proof Since AC =r = BC, C € /.

Theorem If, in a neutral geometry, C,(S)NCs(D) has three or more points, then C' = D
and r = s.

Proof Let P, @, and R be three distinct points in C,.(S) N Cs(D). Let £ be the perpen-
dicular bisector of PQ and let m be the perpendicular bisector of QR. Then C' € £ N'm
and D € £ N'm. Hence either C' = D, or C and D are distinct points and ¢ = m.

Suppose £ = m. Let M be the midpoint of PQ and N be the midpoint of QR. If P, Q,
and R were collinear, then

NPQ={M}=¢NQR={N}.
Hence M = N, which would imply P = R. Hence P, (), and R must be noncollinear, in

which case M, @, and N are noncollinear. But then AMQ@N has two right angles, which
is a contradiction. Hence ¢ # m and C = D.

Finally, we now have r = PC' = PD = s.
Definition Given C = C,.(C) in a metric geometry {P, L, d}, we call
int(C)={P: PeP,CP<r}
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the interior of C and we call
ext(C)={P:PeP,CP >r}
the exterior of C.
Theorem The interior of a circle in a neutral geometry is convex.

Proof Let C be a circle with radius r and center C'. Let A, B € int(C) and let A—D — B.

If C e E, then we may choose a ruler f for AB with f(C) =0. Then —r < f(A) <
f(D)< f(B)<ror—r< f(B)< f(D)< f(A)<r,soCD =|f(D)| <rand D € int(C).

Now suppose C' ¢ :4_B) . Then A, B, and C are noncollinear. It follows that C'D is less than
the larger of CA and CB. Hence CD < r, and D € int(C). Thus int(C) is convex.

Theorem In a neutral geometry, a line intersects a circle in at most two points.
Proof See homework.

Definition Given a line ¢ and a circle C in a metric geometry, we say £ is tangent to C
if /N C contains exactly one point and we call £ a secant of C if £ N C contains exactly two
points.

Theorem If, in a neutral geometry, @ € C,.(C) and t is a line through @, then ¢ is
tangent to C,.(C) if and only if t 1 CQ.

Proof Suppose tis tangent to C,.(C) at Q). Let A be the foot of the perpendicular from C

tot. If A7 (@, then let B € t such that Q@ — A— B and AQ ~ AB. Then ACAB ~ ACAQ
by Side-Angle-Side; in particular, CB ~ C'Q. Thus CB = r, and r € C,(C), contradicting

the assumption that ¢ is a tangent line. Hence A = @ and t 1. C' A.

Now suppose t | C@ If Pet, P# (@, then ACQP is a right triangle with hypotenuse
CP. Hence CP > CQ =r,s0 P ¢ C.(C). Hence tNC,(C) = {Q}, so t is tangent to C.

Theorem Given any three points A, B, and C' in a neutral geometry,

|AB — AC| < BC.

Proof From the Triangle Inequality, we have

AB < AC + CB,
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from which we obtain

AB — AC < BC,

and

AC < AB + BC,

from which we obtain

AB - AC > —-BC.
Hence |AB — AC| < BC.

Theorem If, in an neutral geometry {P,L,d,m},r>0 and A, B, and C are points such
that AC < r and AB 1 AC then there exists a point D € AB with CD = r.

Proof Let E be a point on A_é with AE = r. Since C'E is the hypotenuse of ACAF, it
follows that CE > AE =r.

Now let f be a ruler for AB with f(A) = 0 and f(B) > 0. Define & : [0,7] — R by

h(t) =d(C, f71(t)).

Note that h(0) = d(C, A) < r and h(r) = d(C, E) > r. If h is continuous, it follows there
exists s € (0,7) such that h(s) = r. If we let D = f~1(s), then r = h(s) = d(C, D).

It remains to show that h is continuous. Let to € [0,r]. Note that for any t € [0, 7],

[R(t) = h(to)| = [d(C, f1(t) = d(C, f 7 (to)| < d(f71(t), f " (to)) = [t — tol-

Hence given € > 0, if we let § > 0, then
h(t) — h(to)| <€

whenever
’t — to’ < 0.

Thus h is continuous at ¢y, and hence continuous on [0, r].

Line-Circle Theorem If, in a neutral geometry, ¢ is a line, C is a circle, and /Nint(C) #
(), then £ is a secant of C.

Proof Suppose C has radius r and center C. If C' € £, let f be a ruler for ¢ with f(C) = 0.
Then f~!(r) and f~(—r) are both on ¢ and on C. Hence / is a secant line of C.

Now suppose C' ¢ . Let P € £Nint(C). Then CP < r. Let A be the foot of the
perpendicular from C' to ¢. If A = P, then CA < r. If A # P, then ACAP is a right
triangle with hypotenuse C'P. Hence CA < CP < r. If we let points B and D be points on



Lecture 22: Circles 22-4

¢ with B— A — D, then, by the previous theorem, there exist points S € AB and () € BD
with C'S = r and CQ = r. Hence / is a secant line of C.

External Tangent Theorem If, in a neutral geometry, C is a circle and P € ext(C),
then there exist exactly two lines through P which are tangent to C.

Proof Suppose C has center C' and radius r. Since P € ext(C), CP > r, so there exists

a unique point A with C' — A — P and CA = r. Let ¢ be the perpendicular to CP at A.
Now CA =r < CP,so A € int(C’), where C’ is the circle of radius C'P with center at C.
Hence, by the previous theorem, ¢ intersects C’ at two points, say, @ and Q’.

Now CQ = CP > r, so there exists a unique point B € C<’—)Q such that C'— B — (@ and
CB =r. Then B € C. Moreover, PC ~ QC, Z/PCB = ZQCA, and CB ~ C'A. Hence
APCB ~ AQC A by Side-Angle-Side. Thus ZPBC'is a right angle since /ZPBC ~ ZQAC.

Hence PB | C'B, and so PB is tangent to C at B.

Using @', we can construct another tangent PB’, where B’ is the unique point on CQ’
with C — B' — Q" and CB’ = r. It is left to the homework to show that there are no other
lines through P tangent to C.



