
Lecture 22: Circles

22.1 Circles

Definition Given a point C in a metric geometry {P,L, d} and real number r > 0, we
call

Cr(C) = {P : P ∈ P, PC = r}

a circle with center C and radius r. If A,B ∈ Cr(C), we call AB a chord of Cr(C); if
C ∈ AB, and AB is a chord, we call AB a diameter of Cr(C). If P ∈ Cr(C), we call PC a
radius segment of Cr(C).

Example In the Poincaré Plane, if C = (a, b), then

Cr(C) = {(x, y) : (x, y) ∈ R2, (x− a)2 + (y − b cosh(r))2 = b2 sinh2(r)}.

Theorem If, in a neutral geometry, AB is a chord of Cr(C) and ` is the perpendicular
bisector of AB, then C ∈ `.

Proof Since AC = r = BC, C ∈ `.

Theorem If, in a neutral geometry, Cr(S)∩Cs(D) has three or more points, then C = D
and r = s.

Proof Let P , Q, and R be three distinct points in Cr(S) ∩ Cs(D). Let ` be the perpen-
dicular bisector of PQ and let m be the perpendicular bisector of QR. Then C ∈ ` ∩m
and D ∈ ` ∩m. Hence either C = D, or C and D are distinct points and ` = m.

Suppose ` = m. Let M be the midpoint of PQ and N be the midpoint of QR. If P , Q,
and R were collinear, then

` ∩
←→
PQ = {M} = ` ∩

←→
QR = {N}.

Hence M = N , which would imply P = R. Hence P , Q, and R must be noncollinear, in
which case M , Q, and N are noncollinear. But then 4MQN has two right angles, which
is a contradiction. Hence ` 6= m and C = D.

Finally, we now have r = PC = PD = s.

Definition Given C = Cr(C) in a metric geometry {P,L, d}, we call

int(C) = {P : P ∈ P, CP < r}
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the interior of C and we call

ext(C) = {P : P ∈ P, CP > r}

the exterior of C.

Theorem The interior of a circle in a neutral geometry is convex.

Proof Let C be a circle with radius r and center C. Let A,B ∈ int(C) and let A−D−B.

If C ∈
←→
AB, then we may choose a ruler f for

←→
AB with f(C) = 0. Then −r < f(A) <

f(D) < f(B) < r or −r < f(B) < f(D) < f(A) < r, so CD = |f(D)| < r and D ∈ int(C).

Now suppose C /∈
←→
AB. Then A, B, and C are noncollinear. It follows that CD is less than

the larger of CA and CB. Hence CD < r, and D ∈ int(C). Thus int(C) is convex.

Theorem In a neutral geometry, a line intersects a circle in at most two points.

Proof See homework.

Definition Given a line ` and a circle C in a metric geometry, we say ` is tangent to C
if ` ∩ C contains exactly one point and we call ` a secant of C if ` ∩ C contains exactly two
points.

Theorem If, in a neutral geometry, Q ∈ Cr(C) and t is a line through Q, then t is

tangent to Cr(C) if and only if t ⊥
←→
CQ.

Proof Suppose t is tangent to Cr(C) at Q. Let A be the foot of the perpendicular from C
to t. If A 6= Q, then let B ∈ t such that Q−A−B and AQ ' AB. Then 4CAB ' 4CAQ
by Side-Angle-Side; in particular, CB ' CQ. Thus CB = r, and r ∈ Cr(C), contradicting

the assumption that t is a tangent line. Hence A = Q and t ⊥
←→
CA.

Now suppose t ⊥
←→
CQ. If P ∈ t, P 6= Q, then 4CQP is a right triangle with hypotenuse

CP . Hence CP > CQ = r, so P /∈ Cr(C). Hence t ∩ Cr(C) = {Q}, so t is tangent to C.

Theorem Given any three points A, B, and C in a neutral geometry,

|AB −AC| ≤ BC.

Proof From the Triangle Inequality, we have

AB ≤ AC + CB,
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from which we obtain
AB −AC ≤ BC,

and
AC ≤ AB + BC,

from which we obtain
AB −AC ≥ −BC.

Hence |AB −AC| ≤ BC.

Theorem If, in a neutral geometry {P,L, d,m}, r > 0 and A, B, and C are points such

that AC < r and
←→
AB ⊥

←→
AC, then there exists a point D ∈

−→
AB with CD = r.

Proof Let E be a point on
−→
AB with AE = r. Since CE is the hypotenuse of 4CAE, it

follows that CE > AE = r.

Now let f be a ruler for
←→
AB with f(A) = 0 and f(B) > 0. Define h : [0, r] → R by

h(t) = d(C, f−1(t)).

Note that h(0) = d(C,A) < r and h(r) = d(C,E) > r. If h is continuous, it follows there
exists s ∈ (0, r) such that h(s) = r. If we let D = f−1(s), then r = h(s) = d(C,D).

It remains to show that h is continuous. Let t0 ∈ [0, r]. Note that for any t ∈ [0, r],

|h(t)− h(t0)| = |d(C, f−1(t))− d(C, f−1(t0)| ≤ d(f−1(t), f−1(t0)) = |t− t0|.

Hence given ε > 0, if we let δ > 0, then

|h(t)− h(t0)| < ε

whenever
|t− t0| < δ.

Thus h is continuous at t0, and hence continuous on [0, r].

Line-Circle Theorem If, in a neutral geometry, ` is a line, C is a circle, and `∩ int(C) 6=
∅, then ` is a secant of C.

Proof Suppose C has radius r and center C. If C ∈ `, let f be a ruler for ` with f(C) = 0.
Then f−1(r) and f−1(−r) are both on ` and on C. Hence ` is a secant line of C.

Now suppose C /∈ `. Let P ∈ ` ∩ int(C). Then CP < r. Let A be the foot of the
perpendicular from C to `. If A = P , then CA < r. If A 6= P , then 4CAP is a right
triangle with hypotenuse CP . Hence CA < CP < r. If we let points B and D be points on
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` with B−A−D, then, by the previous theorem, there exist points S ∈
−→
AB and Q ∈

−→
BD

with CS = r and CQ = r. Hence ` is a secant line of C.

External Tangent Theorem If, in a neutral geometry, C is a circle and P ∈ ext(C),
then there exist exactly two lines through P which are tangent to C.

Proof Suppose C has center C and radius r. Since P ∈ ext(C), CP > r, so there exists

a unique point A with C − A − P and CA = r. Let ` be the perpendicular to
←→
CP at A.

Now CA = r < CP , so A ∈ int(C′), where C′ is the circle of radius CP with center at C.
Hence, by the previous theorem, ` intersects C′ at two points, say, Q and Q′.

Now CQ = CP > r, so there exists a unique point B ∈
←→
CQ such that C − B − Q and

CB = r. Then B ∈ C. Moreover, PC ' QC, ∠PCB = ∠QCA, and CB ' CA. Hence
4PCB ' 4QCA by Side-Angle-Side. Thus ∠PBC is a right angle since ∠PBC ' ∠QAC.

Hence
←→
PB ⊥

←→
CB, and so

←→
PB is tangent to C at B.

Using Q′, we can construct another tangent
←→
PB′, where B′ is the unique point on CQ′

with C −B′−Q′ and CB′ = r. It is left to the homework to show that there are no other
lines through P tangent to C.


