Lecture 22: Circles

22.1 Circles

Definition Given a point C in a metric geometry $\{\mathcal{P}, \mathcal{L}, d\}$ and real number $r>0$, we call

$$
\mathcal{C}_{r}(C)=\{P: P \in \mathcal{P}, P C=r\}
$$

a circle with center C and radius r. If $A, B \in \mathcal{C}_{r}(C)$, we call $\overline{A B}$ a chord of $\mathcal{C}_{r}(C)$; if $C \in \overline{A B}$, and $\overline{A B}$ is a chord, we call $\overline{A B}$ a diameter of $\mathcal{C}_{r}(C)$. If $P \in \mathcal{C}_{r}(C)$, we call $\overline{P C}$ a radius segment of $\mathcal{C}_{r}(C)$.

Example In the Poincaré Plane, if $C=(a, b)$, then

$$
\mathcal{C}_{r}(C)=\left\{(x, y):(x, y) \in \mathbb{R}^{2},(x-a)^{2}+(y-b \cosh (r))^{2}=b^{2} \sinh ^{2}(r)\right\} .
$$

Theorem If, in a neutral geometry, $\overline{A B}$ is a chord of $\mathcal{C}_{r}(C)$ and ℓ is the perpendicular bisector of $\overline{A B}$, then $C \in \ell$.

Proof Since $A C=r=B C, C \in \ell$.
Theorem If, in a neutral geometry, $\mathcal{C}_{r}(S) \cap \mathcal{C}_{s}(D)$ has three or more points, then $C=D$ and $r=s$.

Proof Let P, Q, and R be three distinct points in $\mathcal{C}_{r}(S) \cap \mathcal{C}_{s}(D)$. Let ℓ be the perpendicular bisector of $\overline{P Q}$ and let m be the perpendicular bisector of $\overline{Q R}$. Then $C \in \ell \cap m$ and $D \in \ell \cap m$. Hence either $C=D$, or C and D are distinct points and $\ell=m$.

Suppose $\ell=m$. Let M be the midpoint of $\overline{P Q}$ and N be the midpoint of $\overline{Q R}$. If P, Q, and R were collinear, then

$$
\ell \cap \overleftrightarrow{P Q}=\{M\}=\ell \cap \overleftrightarrow{Q R}=\{N\}
$$

Hence $M=N$, which would imply $P=R$. Hence P, Q, and R must be noncollinear, in which case M, Q, and N are noncollinear. But then $\triangle M Q N$ has two right angles, which is a contradiction. Hence $\ell \neq m$ and $C=D$.

Finally, we now have $r=P C=P D=s$.
Definition Given $\mathcal{C}=\mathcal{C}_{r}(C)$ in a metric geometry $\{\mathcal{P}, \mathcal{L}, d\}$, we call

$$
\operatorname{int}(\mathcal{C})=\{P: P \in \mathcal{P}, C P<r\}
$$

the interior of \mathcal{C} and we call

$$
\operatorname{ext}(\mathcal{C})=\{P: P \in \mathcal{P}, C P>r\}
$$

the exterior of \mathcal{C}.

Theorem The interior of a circle in a neutral geometry is convex.
Proof Let \mathcal{C} be a circle with radius r and center C. Let $A, B \in \operatorname{int}(\mathcal{C})$ and let $A-D-B$. If $C \in \overleftrightarrow{A B}$, then we may choose a ruler f for $\overleftrightarrow{A B}$ with $f(C)=0$. Then $-r<f(A)<$ $f(D)<f(B)<r$ or $-r<f(B)<f(D)<f(A)<r$, so $C D=|f(D)|<r$ and $D \in \operatorname{int}(\mathcal{C})$.

Now suppose $C \notin \overleftrightarrow{A B}$. Then A, B, and C are noncollinear. It follows that $C D$ is less than the larger of $C A$ and $C B$. Hence $C D<r$, and $D \in \operatorname{int}(\mathcal{C})$. Thus $\operatorname{int}(\mathcal{C})$ is convex.

Theorem In a neutral geometry, a line intersects a circle in at most two points.

Proof See homework.

Definition Given a line ℓ and a circle \mathcal{C} in a metric geometry, we say ℓ is tangent to \mathcal{C} if $\ell \cap \mathcal{C}$ contains exactly one point and we call ℓ a secant of \mathcal{C} if $\ell \cap \mathcal{C}$ contains exactly two points.

Theorem If, in a neutral geometry, $Q \in \mathcal{C}_{r}(C)$ and t is a line through Q, then t is tangent to $\mathcal{C}_{r}(C)$ if and only if $t \perp \overleftrightarrow{C Q}$.

Proof Suppose t is tangent to $\mathcal{C}_{r}(C)$ at Q. Let A be the foot of the perpendicular from C to t. If $A \neq Q$, then let $B \in t$ such that $Q-A-B$ and $\overline{A Q} \simeq \overline{A B}$. Then $\triangle C A B \simeq \triangle C A Q$ by Side-Angle-Side; in particular, $\overline{C B} \simeq \overline{C Q}$. Thus $C B=r$, and $r \in \mathcal{C}_{r}(C)$, contradicting the assumption that t is a tangent line. Hence $A=Q$ and $t \perp \overleftrightarrow{C A}$.

Now suppose $t \perp \overleftrightarrow{C Q}$. If $P \in t, P \neq Q$, then $\triangle C Q P$ is a right triangle with hypotenuse $C P$. Hence $C P>C Q=r$, so $P \notin \mathcal{C}_{r}(C)$. Hence $t \cap \mathcal{C}_{r}(C)=\{Q\}$, so t is tangent to C.

Theorem Given any three points A, B, and C in a neutral geometry,

$$
|A B-A C| \leq B C
$$

Proof From the Triangle Inequality, we have

$$
A B \leq A C+C B
$$

from which we obtain

$$
A B-A C \leq B C
$$

and

$$
A C \leq A B+B C
$$

from which we obtain

$$
A B-A C \geq-B C
$$

Hence $|A B-A C| \leq B C$.
Theorem If, in a neutral geometry $\{\mathcal{P}, \mathcal{L}, d, m\}, r>0$ and A, B, and C are points such that $A C<r$ and $\overleftrightarrow{A B} \perp \overleftrightarrow{A C}$, then there exists a point $D \in \overrightarrow{A B}$ with $C D=r$.

Proof Let E be a point on $\overrightarrow{A B}$ with $A E=r$. Since $C E$ is the hypotenuse of $\triangle C A E$, it follows that $C E>A E=r$.

Now let f be a ruler for $\overleftrightarrow{A B}$ with $f(A)=0$ and $f(B)>0$. Define $h:[0, r] \rightarrow \mathbb{R}$ by

$$
h(t)=d\left(C, f^{-1}(t)\right) .
$$

Note that $h(0)=d(C, A)<r$ and $h(r)=d(C, E)>r$. If h is continuous, it follows there exists $s \in(0, r)$ such that $h(s)=r$. If we let $D=f^{-1}(s)$, then $r=h(s)=d(C, D)$.

It remains to show that h is continuous. Let $t_{0} \in[0, r]$. Note that for any $t \in[0, r]$,

$$
\left|h(t)-h\left(t_{0}\right)\right|=\mid d\left(C, f^{-1}(t)\right)-d\left(C, f^{-1}\left(t_{0}\right)\left|\leq d\left(f^{-1}(t), f^{-1}\left(t_{0}\right)\right)=\left|t-t_{0}\right|\right.\right.
$$

Hence given $\epsilon>0$, if we let $\delta>0$, then

$$
\left|h(t)-h\left(t_{0}\right)\right|<\epsilon
$$

whenever

$$
\left|t-t_{0}\right|<\delta
$$

Thus h is continuous at t_{0}, and hence continuous on $[0, r]$.
Line-Circle Theorem If, in a neutral geometry, ℓ is a line, \mathcal{C} is a circle, and $\ell \cap \operatorname{int}(\mathcal{C}) \neq$ \emptyset, then ℓ is a secant of \mathcal{C}.

Proof Suppose \mathcal{C} has radius r and center C. If $C \in \ell$, let f be a ruler for ℓ with $f(C)=0$. Then $f^{-1}(r)$ and $f^{-1}(-r)$ are both on ℓ and on \mathcal{C}. Hence ℓ is a secant line of \mathcal{C}.

Now suppose $C \notin \ell$. Let $P \in \ell \cap \operatorname{int}(\mathcal{C})$. Then $C P<r$. Let A be the foot of the perpendicular from C to ℓ. If $A=P$, then $C A<r$. If $A \neq P$, then $\triangle C A P$ is a right triangle with hypotenuse $C P$. Hence $C A<C P<r$. If we let points B and D be points on
ℓ with $B-A-D$, then, by the previous theorem, there exist points $S \in \overrightarrow{A B}$ and $Q \in \overrightarrow{B D}$ with $C S=r$ and $C Q=r$. Hence ℓ is a secant line of \mathcal{C}.

External Tangent Theorem If, in a neutral geometry, \mathcal{C} is a circle and $P \in \operatorname{ext}(\mathcal{C})$, then there exist exactly two lines through P which are tangent to \mathcal{C}.

Proof Suppose \mathcal{C} has center C and radius r. Since $P \in \operatorname{ext}(\mathcal{C}), C P>r$, so there exists a unique point A with $C-A-P$ and $C A=r$. Let ℓ be the perpendicular to $\overleftrightarrow{C P}$ at A. Now $C A=r<C P$, so $A \in \operatorname{int}\left(\mathcal{C}^{\prime}\right)$, where \mathcal{C}^{\prime} is the circle of radius $C P$ with center at C. Hence, by the previous theorem, ℓ intersects \mathcal{C}^{\prime} at two points, say, Q and Q^{\prime}.

Now $C Q=C P>r$, so there exists a unique point $B \in \overleftrightarrow{C Q}$ such that $C-B-Q$ and $C B=r$. Then $B \in \mathcal{C}$. Moreover, $\overline{P C} \simeq \overline{Q C}, \angle P C B=\angle Q C A$, and $\overline{C B} \simeq \overline{C A}$. Hence $\triangle P C B \simeq \triangle Q C A$ by Side-Angle-Side. Thus $\angle P B C$ is a right angle since $\angle P B C \simeq \angle Q A C$. Hence $\overleftrightarrow{P B} \perp \overleftrightarrow{C B}$, and so $\overleftrightarrow{P B}$ is tangent to \mathcal{C} at B.

Using Q^{\prime}, we can construct another tangent $\overleftrightarrow{P B^{\prime}}$, where B^{\prime} is the unique point on $C Q^{\prime}$ with $C-B^{\prime}-Q^{\prime}$ and $C B^{\prime}=r$. It is left to the homework to show that there are no other lines through P tangent to \mathcal{C}.

