Lecture 22: Circles

22.1 Circles

Definition Given a point C in a metric geometry $\{\mathcal{P}, \mathcal{L}, d\}$ and real number r > 0, we call

$$\mathcal{C}_r(C) = \{P : P \in \mathcal{P}, PC = r\}$$

a circle with center C and radius r. If $A, B \in C_r(C)$, we call \overline{AB} a chord of $C_r(C)$; if $C \in \overline{AB}$, and \overline{AB} is a chord, we call \overline{AB} a diameter of $C_r(C)$. If $P \in C_r(C)$, we call \overline{PC} a radius segment of $C_r(C)$.

Example In the Poincaré Plane, if C = (a, b), then

$$\mathcal{C}_r(C) = \{(x, y) : (x, y) \in \mathbb{R}^2, (x - a)^2 + (y - b\cosh(r))^2 = b^2\sinh^2(r)\}.$$

Theorem If, in a neutral geometry, \overline{AB} is a chord of $C_r(C)$ and ℓ is the perpendicular bisector of \overline{AB} , then $C \in \ell$.

Proof Since $AC = r = BC, C \in \ell$.

Theorem If, in a neutral geometry, $C_r(S) \cap C_s(D)$ has three or more points, then C = D and r = s.

Proof Let P, Q, and R be three distinct points in $\mathcal{C}_r(S) \cap \mathcal{C}_s(D)$. Let ℓ be the perpendicular bisector of \overline{PQ} and let m be the perpendicular bisector of \overline{QR} . Then $C \in \ell \cap m$ and $D \in \ell \cap m$. Hence either C = D, or C and D are distinct points and $\ell = m$.

Suppose $\ell = m$. Let M be the midpoint of \overline{PQ} and N be the midpoint of \overline{QR} . If P, Q, and R were collinear, then

$$\ell \cap \overrightarrow{PQ} = \{M\} = \ell \cap \overleftrightarrow{QR} = \{N\}.$$

Hence M = N, which would imply P = R. Hence P, Q, and R must be noncollinear, in which case M, Q, and N are noncollinear. But then $\triangle MQN$ has two right angles, which is a contradiction. Hence $\ell \neq m$ and C = D.

Finally, we now have r = PC = PD = s.

Definition Given $\mathcal{C} = \mathcal{C}_r(C)$ in a metric geometry $\{\mathcal{P}, \mathcal{L}, d\}$, we call

$$\operatorname{int}(\mathcal{C}) = \{ P : P \in \mathcal{P}, CP < r \}$$

the *interior* of \mathcal{C} and we call

$$ext(\mathcal{C}) = \{P : P \in \mathcal{P}, CP > r\}$$

the *exterior* of \mathcal{C} .

Theorem The interior of a circle in a neutral geometry is convex.

Proof Let C be a circle with radius r and center C. Let $A, B \in int(C)$ and let A - D - B. If $C \in \overrightarrow{AB}$, then we may choose a ruler f for \overrightarrow{AB} with f(C) = 0. Then -r < f(A) < f(D) < f(B) < r or -r < f(B) < f(D) < f(A) < r, so CD = |f(D)| < r and $D \in int(C)$.

Now suppose $C \notin AB$. Then A, B, and C are noncollinear. It follows that CD is less than the larger of CA and CB. Hence CD < r, and $D \in int(\mathcal{C})$. Thus $int(\mathcal{C})$ is convex.

Theorem In a neutral geometry, a line intersects a circle in at most two points.

Proof See homework.

Definition Given a line ℓ and a circle C in a metric geometry, we say ℓ is *tangent* to C if $\ell \cap C$ contains exactly one point and we call ℓ a *secant* of C if $\ell \cap C$ contains exactly two points.

Theorem If, in a neutral geometry, $Q \in C_r(C)$ and t is a line through Q, then t is tangent to $C_r(C)$ if and only if $t \perp \overrightarrow{CQ}$.

Proof Suppose t is tangent to $C_r(C)$ at Q. Let A be the foot of the perpendicular from C to t. If $A \neq Q$, then let $B \in t$ such that Q - A - B and $\overline{AQ} \simeq \overline{AB}$. Then $\triangle CAB \simeq \triangle CAQ$ by Side-Angle-Side; in particular, $\overline{CB} \simeq \overline{CQ}$. Thus CB = r, and $r \in C_r(C)$, contradicting the assumption that t is a tangent line. Hence A = Q and $t \perp \overrightarrow{CA}$.

Now suppose $t \perp \overrightarrow{CQ}$. If $P \in t$, $P \neq Q$, then $\triangle CQP$ is a right triangle with hypotenuse CP. Hence CP > CQ = r, so $P \notin \mathcal{C}_r(C)$. Hence $t \cap \mathcal{C}_r(C) = \{Q\}$, so t is tangent to C.

Theorem Given any three points A, B, and C in a neutral geometry,

$$|AB - AC| \le BC.$$

Proof From the Triangle Inequality, we have

$$AB \leq AC + CB$$
,

from which we obtain

and

from which we obtain

 $AB - AC \ge -BC.$

AB - AC < BC,

AC < AB + BC,

Hence $|AB - AC| \leq BC$.

Theorem If, in a neutral geometry $\{\mathcal{P}, \mathcal{L}, d, m\}$, r > 0 and A, B, and C are points such that AC < r and $\overrightarrow{AB} \perp \overrightarrow{AC}$, then there exists a point $D \in \overrightarrow{AB}$ with CD = r.

Proof Let *E* be a point on *AB* with AE = r. Since *CE* is the hypotenuse of $\triangle CAE$, it follows that CE > AE = r.

Now let f be a ruler for AB with f(A) = 0 and f(B) > 0. Define $h: [0, r] \to \mathbb{R}$ by

$$h(t) = d(C, f^{-1}(t)).$$

Note that h(0) = d(C, A) < r and h(r) = d(C, E) > r. If h is continuous, it follows there exists $s \in (0, r)$ such that h(s) = r. If we let $D = f^{-1}(s)$, then r = h(s) = d(C, D).

It remains to show that h is continuous. Let $t_0 \in [0, r]$. Note that for any $t \in [0, r]$,

$$|h(t) - h(t_0)| = |d(C, f^{-1}(t)) - d(C, f^{-1}(t_0))| \le d(f^{-1}(t), f^{-1}(t_0)) = |t - t_0|.$$

Hence given $\epsilon > 0$, if we let $\delta > 0$, then

$$|h(t) - h(t_0)| < \epsilon$$

whenever

$$|t - t_0| < \delta.$$

Thus h is continuous at t_0 , and hence continuous on [0, r].

Line-Circle Theorem If, in a neutral geometry, ℓ is a line, C is a circle, and $\ell \cap \operatorname{int}(C) \neq \emptyset$, then ℓ is a secant of C.

Proof Suppose C has radius r and center C. If $C \in \ell$, let f be a ruler for ℓ with f(C) = 0. Then $f^{-1}(r)$ and $f^{-1}(-r)$ are both on ℓ and on C. Hence ℓ is a secant line of C.

Now suppose $C \notin \ell$. Let $P \in \ell \cap \operatorname{int}(\mathcal{C})$. Then CP < r. Let A be the foot of the perpendicular from C to ℓ . If A = P, then CA < r. If $A \neq P$, then $\triangle CAP$ is a right triangle with hypotenuse CP. Hence CA < CP < r. If we let points B and D be points on

 ℓ with B - A - D, then, by the previous theorem, there exist points $S \in \overrightarrow{AB}$ and $Q \in \overrightarrow{BD}$ with CS = r and CQ = r. Hence ℓ is a secant line of \mathcal{C} .

External Tangent Theorem If, in a neutral geometry, C is a circle and $P \in ext(C)$, then there exist exactly two lines through P which are tangent to C.

Proof Suppose C has center C and radius r. Since $P \in \text{ext}(C)$, CP > r, so there exists a unique point A with C - A - P and CA = r. Let ℓ be the perpendicular to \overrightarrow{CP} at A. Now CA = r < CP, so $A \in \text{int}(C')$, where C' is the circle of radius CP with center at C. Hence, by the previous theorem, ℓ intersects C' at two points, say, Q and Q'.

Now CQ = CP > r, so there exists a unique point $B \in \overrightarrow{CQ}$ such that C - B - Q and CB = r. Then $B \in \mathcal{C}$. Moreover, $\overrightarrow{PC} \simeq \overrightarrow{QC}$, $\angle PCB = \angle QCA$, and $\overrightarrow{CB} \simeq \overrightarrow{CA}$. Hence $\triangle PCB \simeq \triangle QCA$ by Side-Angle-Side. Thus $\angle PBC$ is a right angle since $\angle PBC \simeq \angle QAC$. Hence $\overrightarrow{PB} \perp \overrightarrow{CB}$, and so \overrightarrow{PB} is tangent to \mathcal{C} at B.

Using Q', we can construct another tangent PB', where B' is the unique point on CQ' with C - B' - Q' and CB' = r. It is left to the homework to show that there are no other lines through P tangent to C.