Lecture 21: Right Triangles

21.1 Right Triangles

Definition We call a triangle $\triangle A B C$ in a protractor geometry a right triangle if one of $\angle A, \angle B$, or $\angle C$ is a right angle. We call a side opposite a right angle in a right triangle a hypotenuse.

Definition In a protractor geometry, we call $\overline{A B}$ the longest side of $\triangle A B C$ if $\overline{A B}>\overline{A C}$ and $\overline{A B}>\overline{B C}$, and we call $\overline{A B}$ a longest side if $\overline{A B} \geq \overline{A C}$ and $\overline{A B} \geq \overline{B C}$.

Theorem If, in a neutral geometry, $\triangle A B C$ is a right triangle with $\angle C$ a right angle, then $\angle A$ and $\angle B$ are acute and $\overline{A B}$ is the longest side of $\triangle A B C$.

Proof Let D be a point such that $D-C-B$. Then $\angle D C A$ is a right angle, exterior to $\triangle A B C$ with remote interior angles $\angle A$ and $\angle B$. Hence $\angle D C A>\angle A$ and $\angle D C A>\angle B$. Since $\angle D C A \simeq \angle A C B$, it follows that $\angle C>\angle A$ and $\angle C>\angle B$. Hence $\angle A$ and $\angle B$ are both acute. Moreover, it also follows that $\overline{A B}>\overline{A C}$ and $\overline{A B}>\overline{B C}$.

Note that the previous result says that a right triangle has only one hypotenuse and that the hypotenuse is the longest side of a right triangle.

Definition Given a right triangle $\triangle A B C$ with right angle at C in a neutral geometry, we call $\overline{A C}$ and $\overline{B C}$ the legs of $\triangle A B C$.

Theorem If P and Q are points and ℓ is a line in a neutral geometry with $Q \in \ell$ and $P \notin L$, then $\overleftrightarrow{P Q} \perp \ell$ if and only if $P Q \leq P R$ for all $R \in \ell$

Proof Suppose $\overleftrightarrow{P Q} \perp \ell$ and $R \in \ell$. If $R=Q$, then $P Q=P R$. If $R \neq Q$, then $\triangle P Q R$ is a right triangle with hypotenuse $P R$. Hence $P Q<P R$. Thus, in either case, $P Q \leq P R$.

Now suppose $P Q \leq P R$ for all $R \in \ell$. Let S be the point on ℓ such that $P S$ is the unique line through P which is perpendicular to ℓ. If $S \neq Q$, then $\triangle P Q S$ is a right triangle with hypotenuse $\overline{P Q}$, from which it follows that $P S<P Q$, contradicting our assumption about Q. Hence we must have $S=Q$, and so $\overleftrightarrow{P Q} \perp \ell$.

Definition Given a line ℓ and a point P in a neutral geometry $\{\mathcal{P}, \mathcal{L}, d, m\}$, we call

$$
d(P, \ell)= \begin{cases}d(P, Q), & \text { if } P \notin \ell \text { and } Q \text { is the unique point on } \ell \text { for which } \overleftrightarrow{P Q} \perp \ell \\ 0, & \text { if } P \in \ell\end{cases}
$$

the distance from P to ℓ.

Note that for any $P \in \ell, d(P, \ell) \leq d(P, Q)$ for all $Q \in \ell$, with $d(P, \ell)=d(P, Q)$ if and only if $\overleftrightarrow{P Q} \perp \ell$.

Definition Given $\triangle A B C$ in a neutral geometry with D being the unique point on $\overleftrightarrow{A B}$ for which $\overleftrightarrow{C D} \perp \overleftrightarrow{A B}$, we call $\overline{C D}$ the altitude from C and we call D the foot of the altitude from C.

Theorem If, in a neutral geometry, $\overline{A B}$ is the longest side of $\triangle A B C$ and D is the foot of the altitude from C, then $A-D-B$.

Proof Suppose $D-A-B$. Then $\overline{C B}$ is the hypotenuse of the right triangle $\triangle C B D$, and so $\overline{C B}>\overline{B D}$. But $\overline{D B}>\overline{A B}$, so $\overline{C B}>\overline{A B}$, contradicting the assumption that $\overline{A B}$ is the longest side of $\triangle A B C$.

Now suppose $D=A$. Then $\triangle A B C$ is right triangle with right angle at A, and so $\overline{B C}>$ $\overline{A B}$, again contradicting the assumption that $\overline{A B}$ is the longest side of $\triangle A B C$.

Similarly, we cannot have $A-B-D$ nor $D=B$. Hence $A-D-B$.

Hypotenuse-Leg (HL) If, in a neutral geometry, $\triangle A B C$ and $\triangle D E F$ are right triangles with right angles at C and $F, \overline{A B} \simeq \overline{D E}$, and $\overline{A C} \simeq \overline{D F}$, then $\triangle A B C \simeq \triangle D E F$.

Note that we could prove Hypotenuse-Leg in the Euclidean Plane using the Pythagorean Theorem and Side-Side-Side.

Proof Let G be the point on $\overleftrightarrow{E F}$ such that $E-F-G$ and $\overline{F G} \simeq \overline{B C}$. Then $\overline{A C} \simeq \overline{D F}$, $\angle A C B \simeq \angle D F G$ (they are both right angles), and $\overline{C B} \simeq \overline{F G}$, and so $\triangle A C B \simeq \triangle D F G$ by Side-Angle-Side. In particular, $\overline{A B} \simeq \overline{D G}$, so $\overline{D G} \simeq \overline{D E}$. Hence $\triangle D E G$ is isosceles, and so $\angle D E F \simeq \angle D G F$. Thus $\triangle D E F \simeq \triangle D G F$ by Side-Angle-Angle. Hence $\triangle D E F \simeq$ $\triangle A B C$.

Hypotenuse-Angle (HA) If, in a neutral geometry, $\triangle A B C$ and $\triangle D E F$ are right triangles with right angles at C and $F, \overline{A B} \simeq \overline{D E}$, and $\angle A \simeq \angle D$, then $\triangle A B C \simeq \triangle D E F$.

Proof See homework.

Theorem If, in a neutral geometry $\{\mathcal{P}, \mathcal{L}, d, m\}, \ell$ is the perpendicular bisector of $\overline{A B}$, then

$$
\ell=\{P: P \in \mathcal{P}, A P=B P\} .
$$

Proof Let P be a point with $A P=B P$. If $P \in \overleftrightarrow{A B}$, then P is the midpoint of $\overline{A B}$, and so $P \in \ell$. So suppose $P \notin \overleftrightarrow{A B}$. Let N be the unique point on $\overleftrightarrow{A B}$ such that $\overleftrightarrow{P N} \perp \overleftrightarrow{A B}$.

Note that $N \neq A$ since then $\triangle A P B$ is a right triangle with hypotenuse $\overline{B P}$, which would imply that $B P>A P$. Similarly, $N \neq B$. Then $\overline{A P} \simeq \overline{B P}$ and $\overline{P N} \simeq \overline{P N}$ imply $\triangle P N A \simeq \triangle P N B$ by Hypotenuse-Leg. In particular, $\overline{N A} \simeq \overline{N B}$, from which it follows that N is the midpoint of $\overline{A B}$. Hence $\overleftrightarrow{P N}=\ell$, and so $P \in \ell$.

Now let $P \in \ell$. If $P \in \overleftrightarrow{A B}$, then P is the midpoint of $\overline{A B}$, and so $A P=B P$. If $P \notin \overleftrightarrow{A B}$, then $\triangle P M A \simeq \triangle P M B$, where M is the midpoint of $\overline{A B}$, by Side-Angle-Side. In particular, $A P=B P$. Thus $\ell=\{P: P \in \mathcal{P}, A P=B P\}$.

Theorem If, in a neutral geometry, $\overrightarrow{B D}$ is the bisector of $\angle A B C, E$ is the foot of the perpendicular from D to $\overleftrightarrow{B A}$, and F is the foot of the perpendicular from D to $\overleftrightarrow{B C}$, then $\overline{D E} \simeq \overline{D F}$.

Proof See homework.

