Lecture 21: Right Triangles

21.1 Right Triangles

Definition We call a triangle $\triangle ABC$ in a protractor geometry a *right triangle* if one of $\angle A$, $\angle B$, or $\angle C$ is a right angle. We call a side opposite a right angle in a right triangle a *hypotenuse*.

Definition In a protractor geometry, we call \overline{AB} the *longest side* of $\triangle ABC$ if $\overline{AB} > \overline{AC}$ and $\overline{AB} > \overline{BC}$, and we call \overline{AB} a *longest side* if $\overline{AB} \ge \overline{AC}$ and $\overline{AB} \ge \overline{BC}$.

Theorem If, in a neutral geometry, $\triangle ABC$ is a right triangle with $\angle C$ a right angle, then $\angle A$ and $\angle B$ are acute and \overline{AB} is the longest side of $\triangle ABC$.

Proof Let *D* be a point such that D - C - B. Then $\angle DCA$ is a right angle, exterior to $\triangle ABC$ with remote interior angles $\angle A$ and $\angle B$. Hence $\angle DCA > \angle A$ and $\angle DCA > \angle B$. Since $\angle DCA \simeq \angle ACB$, it follows that $\angle C > \angle A$ and $\angle C > \angle B$. Hence $\angle A$ and $\angle B$ are both acute. Moreover, it also follows that $\overline{AB} > \overline{AC}$ and $\overline{AB} > \overline{BC}$.

Note that the previous result says that a right triangle has only one hypotenuse and that the hypotenuse is the longest side of a right triangle.

Definition Given a right triangle $\triangle ABC$ with right angle at C in a neutral geometry, we call \overline{AC} and \overline{BC} the legs of $\triangle ABC$.

Theorem If P and Q are points and ℓ is a line in a neutral geometry with $Q \in \ell$ and $P \notin L$, then $\overrightarrow{PQ} \perp \ell$ if and only if $PQ \leq PR$ for all $R \in \ell$.

Proof Suppose $PQ \perp \ell$ and $R \in \ell$. If R = Q, then PQ = PR. If $R \neq Q$, then $\triangle PQR$ is a right triangle with hypotenuse PR. Hence PQ < PR. Thus, in either case, $PQ \leq PR$.

Now suppose $PQ \leq PR$ for all $R \in \ell$. Let S be the point on ℓ such that PS is the unique line through P which is perpendicular to ℓ . If $S \neq Q$, then $\triangle PQS$ is a right triangle with hypotenuse \overline{PQ} , from which it follows that PS < PQ, contradicting our assumption about Q. Hence we must have S = Q, and so $\overrightarrow{PQ} \perp \ell$.

Definition Given a line ℓ and a point P in a neutral geometry $\{\mathcal{P}, \mathcal{L}, d, m\}$, we call

$$d(P,\ell) = \begin{cases} d(P,Q), & \text{if } P \notin \ell \text{ and } Q \text{ is the unique point on } \ell \text{ for which } \overleftarrow{PQ} \perp \ell, \\ 0, & \text{if } P \in \ell, \end{cases}$$

the distance from P to ℓ .

Note that for any $P \in \ell$, $d(P, \ell) \leq d(P, Q)$ for all $Q \in \ell$, with $d(P, \ell) = d(P, Q)$ if and only if $\overrightarrow{PQ} \perp \ell$.

Definition Given $\triangle ABC$ in a neutral geometry with D being the unique point on AB for which $\overrightarrow{CD} \perp \overrightarrow{AB}$, we call \overrightarrow{CD} the *altitude* from C and we call D the *foot* of the altitude from C.

Theorem If, in a neutral geometry, \overline{AB} is the longest side of $\triangle ABC$ and D is the foot of the altitude from C, then A - D - B.

Proof Suppose D - A - B. Then \overline{CB} is the hypotenuse of the right triangle $\triangle CBD$, and so $\overline{CB} > \overline{BD}$. But $\overline{DB} > \overline{AB}$, so $\overline{CB} > \overline{AB}$, contradicting the assumption that \overline{AB} is the longest side of $\triangle ABC$.

Now suppose D = A. Then $\triangle ABC$ is right triangle with right angle at A, and so $\overline{BC} > \overline{AB}$, again contradicting the assumption that \overline{AB} is the longest side of $\triangle ABC$.

Similarly, we cannot have A - B - D nor D = B. Hence A - D - B.

Hypotenuse-Leg (HL) If, in a neutral geometry, $\triangle ABC$ and $\triangle DEF$ are right triangles with right angles at C and F, $\overline{AB} \simeq \overline{DE}$, and $\overline{AC} \simeq \overline{DF}$, then $\triangle ABC \simeq \triangle DEF$.

Note that we could prove Hypotenuse-Leg in the Euclidean Plane using the Pythagorean Theorem and Side-Side-Side.

Proof Let G be the point on \overrightarrow{EF} such that E - F - G and $\overrightarrow{FG} \simeq \overrightarrow{BC}$. Then $\overrightarrow{AC} \simeq \overrightarrow{DF}$, $\angle ACB \simeq \angle DFG$ (they are both right angles), and $\overrightarrow{CB} \simeq \overrightarrow{FG}$, and so $\triangle ACB \simeq \triangle DFG$ by Side-Angle-Side. In particular, $\overrightarrow{AB} \simeq \overrightarrow{DG}$, so $\overrightarrow{DG} \simeq \overrightarrow{DE}$. Hence $\triangle DEG$ is isosceles, and so $\angle DEF \simeq \angle DGF$. Thus $\triangle DEF \simeq \triangle DGF$ by Side-Angle-Angle. Hence $\triangle DEF \simeq \triangle ABC$.

Hypotenuse-Angle (HA) If, in a neutral geometry, $\triangle ABC$ and $\triangle DEF$ are right triangles with right angles at C and F, $\overline{AB} \simeq \overline{DE}$, and $\angle A \simeq \angle D$, then $\triangle ABC \simeq \triangle DEF$.

Proof See homework.

Theorem If, in a neutral geometry $\{\mathcal{P}, \mathcal{L}, d, m\}$, ℓ is the perpendicular bisector of \overline{AB} , then

$$\ell = \{P : P \in \mathcal{P}, AP = BP\}.$$

Proof Let P be a point with AP = BP. If $P \in \overrightarrow{AB}$, then P is the midpoint of \overline{AB} , and so $P \in \ell$. So suppose $P \notin \overrightarrow{AB}$. Let N be the unique point on \overrightarrow{AB} such that $\overrightarrow{PN} \perp \overrightarrow{AB}$.

Note that $N \neq A$ since then $\triangle APB$ is a right triangle with hypotenuse \overline{BP} , which would imply that BP > AP. Similarly, $N \neq B$. Then $\overline{AP} \simeq \overline{BP}$ and $\overline{PN} \simeq \overline{PN}$ imply $\triangle PNA \simeq \triangle PNB$ by Hypotenuse-Leg. In particular, $\overline{NA} \simeq \overline{NB}$, from which it follows that N is the midpoint of \overline{AB} . Hence $\overrightarrow{PN} = \ell$, and so $P \in \ell$.

Now let $P \in \ell$. If $P \in AB$, then P is the midpoint of \overline{AB} , and so AP = BP. If $P \notin \overrightarrow{AB}$, then $\triangle PMA \simeq \triangle PMB$, where M is the midpoint of \overline{AB} , by Side-Angle-Side. In particular, AP = BP. Thus $\ell = \{P : P \in \mathcal{P}, AP = BP\}$.

Theorem If, in a neutral geometry, \overrightarrow{BD} is the bisector of $\angle ABC$, E is the foot of the perpendicular from D to \overrightarrow{BA} , and F is the foot of the perpendicular from D to \overrightarrow{BC} , then $\overrightarrow{DE} \simeq \overrightarrow{DF}$.

Proof See homework.