
Lecture 2: Sets and Functions

2.1 Sets

We call a collection of objects a set. Technically, a set is an undefined object satisfying
certain axioms, but this loose definition is sufficient for our purposes. We will insist that a
set be defined using a well-defined property which determines whether a particular object
is in the set or not.

Notation:

• If S is a set, we write x ∈ S to indicate that x is an element of S and T ⊂ S to indicate
that T is a subset of S (that is, if x ∈ T , then x ∈ S). Of course, x /∈ S means x is not
an element of S. Note that S = T if and only if S ⊂ T and T ⊂ S.

• If A and B are sets, then

A ∪B = {x : x ∈ A or x ∈ B}

is the union of A and B,

A ∩B = {x : x ∈ A and x ∈ B}

is the intersection of A and B, and

A−B = {x : x ∈ A and x /∈ B}

is the difference of A and B.

• ∅ is the empty set, that is, the set with no elements. Note that given any set S, ∅ ⊂ S.

• If A ∩B = ∅, we say A and B are disjoint.

• If A and B are sets, then

A×B = {(a, b) : a ∈ A, b ∈ B}

is the Cartesian product of A and B.

Example If A = {1, 2} and B = {2, 3, 4}, then

A ∪B = {1, 2, 3, 4},

A ∩B = {2},

A−B = {1},
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B −A = {3, 4},

and
A×B = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4)}.

Example We will show that A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

We first show that A∩ (B∪C) ⊂ (A∩B)∪ (A∩C): Let x ∈ A∩ (B∪C). Then x ∈ A and
x

∫
B∪C. If x ∈ B, then x ∈ A∩B; if x ∈ C, then x ∈ A∩C. Hence x ∈ (A∩B)∪(A∩C),

so A ∩ (B ∪ C) ⊂ (A ∩B) ∪ (A ∩ C).

We now show that (A∩B)∪ (A∩C) ⊂ A∩ (B∪C): Suppose x ∈ (A∩B)∪ (A∩C). Then
either x ∈ A ∩B or x ∈ A ∩ C. If x ∈ A ∩B, then x ∈ A and x ∈ B, so x ∈ A ∩ (B ∪ C).
If x ∈ A ∩ C, then x ∈ A and x ∈ C, so x ∈ A ∩ (B ∪ C). Hence x ∈ A ∩ (B ∪ C), so
(A ∩B) ∪ (A ∩ C) ⊂ A ∩ (B ∪ C). Thus A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Example We let R represent the set of all real numbers and Z represent the set of all
integers. R× R = R2 is the Cartesian plane, that is,

R× R = {(x, y) : x ∈ R, y ∈ R}.

Similarly,
Z× Z = {(m,n) : m ∈ Z, n ∈ Z}.

2.2 Equivalence relations

Definition Given a set S, a binary relation on S is a subset of S × S.

Note: If R ⊂ S×S is a binary relation and (x, y) ∈ R, then we say x and y are related and
write, generically, x ∼ y (for certain specific binary relations we may use a symbol other
than ∼).

Example If T = {(x, y) : x ∈ R, y ∈ R, x < y}, then T is a binary relation on R.

Example If E = {(a, b) : a ∈ Z, y ∈ Z, a−b is divisible by 2}, then E is a binary relation
on Z.

Definition We say a binary relation on a set S is reflexive if for every a ∈ S, a ∼ a;
symmetric if for every a ∈ S and b ∈ S, a ∼ b implies b ∼ a; and transitive if for every
a ∈ S, b ∈ S, and c ∈ S, a ∼ b and b ∼ c imply a ∼ c. A binary relation is an equivalence
relation if it is reflexive, symmetric, and transitive.

Example The binary relation T = {(x, y) : x ∈ R, y ∈ R, x < y} is transitive, but
neither reflexive nor symmetric.
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Example The binary relation E = {(a, b) : a ∈ Z, y ∈ Z, a − b is divisible by 2} is an
equivalence relation: It is reflexive since for any a ∈ S,

a− a = 2 · 0;

symmetric since if a ∼ b, then a − b = 2k for some integer k, from which it follows that
b− a = 2(−k); and transitive since if a ∼ b and b ∼ c, then a− b = 2k for some integer k
and b− c = 2m for some integer m, and so

a− c = (a− b) + (b− c) = 2k + 2m = 2(k + m).

Note: More generally, for integers a, b, and n, we write a ≡ b(n) to indicate that a− b is
divisible by n, in which case we say that a is equivalent to b modulo n.

Definition Given an equivalence relation on a set S, the equivalence class of s ∈ S is
the set

[s] = {x : x ∈ S, x ∼ s}.

Example For integers a and b, let a ∼ b if a ≡ b(2). Then

[1] = {x : x ∈ Z;x is odd} = [3] = [5] = · · ·

and
[0] = {x : x ∈ Z;x is even} = [2] = [4] = · · · .

Theorem Given an equivalence relation on S, if a ∈ S and b ∈ S, then either [a] = [b]
or [a] ∩ [b] = ∅.

Proof Suppose [a] ∩ [b] 6= ∅. Let x ∈ [a]. Since [a] ∩ [b] 6= ∅, there exists a z such that
a ∼ z and b ∼ z. Since x ∼ a, it follows that x ∼ z. Hence x ∼ z and z ∼ b, so x ∼ b.
Thus x ∈ [b] and [a] ⊂ [b]. Similarly, if x ∈ [b], then x ∼ b, b ∼ z, and z ∼ a, so x ∼ a.
Thus x ∈ [a], and so [b] ⊂ [a]. Hence [a] = [b].

2.3 Functions

Definition If f : S → T is a function, then the image of f is the set

Im(f) = {t : t ∈ T, t = f(s) for some s ∈ S}.

We say f is surjective if Im(f) = T . We say f is injective if for every a and b in S,
f(a) = f(b) implies a = b. We say f is a bijection, or a one-to-one correspondence, if it is
both surjective and injective.
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Example f : R → (0,∞) given by f(t) = et is a bijection. It is surjective because if
s ∈ (0,∞), then s = et where t = log(s); it is injective because if f(a) = f(b), then ea = eb,
from which it follows that a = b.

Example f : R → R given by

f(x) =
1

1 + x2

is neither injective nor surjective. It is not injective because, for example, f(−2) = f(2);
it is not surjective because, for example, 0 /∈ Im(f).

Theorem If f : S → T and g : T → V are both surjections, then g ◦ f : S → V is also a
surjection.

Proof If v ∈ V , then, since g is surjective, there exists a t ∈ T for which g(t) = v. Now
since f is surjective, there exists an s ∈ S for which f(s) = t. Then

g ◦ f(s) = g(f(s)) = g(t) = v,

so v ∈ Im(g ◦ f). Hence g ◦ f is a surjection.

Notation: Given a set S, we let idS : S → S denote the identity function, that is, the
function defined by idS(s) = s for all s ∈ S.

Definition If f : S → T is a bijection, then we call the function g : T → S defined by
g(t) = s, where s is the unique element of S with the property that f(s) = t, the inverse
of f , which we denote f−1.

Theorem A function f : S → T is a bijection if and only if there exists a function
g : T → S such that g ◦ f = idS and f ◦ g = idT .

Proof If f is a bijection, then let g = f−1.

Now suppose there exists a function g : T → S such that g◦f = idS and f ◦g = idT . Given
t ∈ T , let s = g(t). Then f(s) = f(g(t)) = t, so f is surjective. Suppose f(a) = f(b).
Then g(f(a) = g(f(b)), and so a = b. Thus f is injective. Hence f is a bijection.


