Lecture 2: Sets and Functions

2.1 Sets

We call a collection of objects a set. Technically, a set is an undefined object satisfying
certain axioms, but this loose definition is sufficient for our purposes. We will insist that a
set be defined using a well-defined property which determines whether a particular object
is in the set or not.

Notation:

o If S is a set, we write x € S to indicate that x is an element of S and T' C S to indicate
that T is a subset of S (that is, if z € T, then x € S). Of course, x ¢ S means z is not
an element of S. Note that S =T if and only if S C T and T C S.

e If A and B are sets, then

AUB={z:xz€ Aorx € B}
is the union of A and B,

ANB={z:z € Aand z € B}
is the intersection of A and B, and

A—B={z:z€ Aand z ¢ B}
is the difference of A and B.

e () is the empty set, that is, the set with no elements. Note that given any set S, ) C S.

o If ANB =1, we say A and B are disjoint.

e If A and B are sets, then

Ax B={(a,b):a€ Abe B}
is the Cartesian product of A and B.
Example If A={1,2} and B = {2,3,4}, then
AUB ={1,2,3,4},

ANB = {2},
A_B:{1}7
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B—A={34),

and
Ax B={(1,2),(1,3),(1,4),(2,2),(2,3),(2,4)}.

Example We will show that AN (BUC)=(ANB)U(ANCQC).

We first show that AN(BUC) C (ANB)U(ANC): Let z € AN(BUC). Then z € A and
z [BUC. If z € B, thenz € ANB; ifx € C, then x € ANC. Hence z € (ANB)U(ANC),
so AN(BUC)C(ANB)U(ANCQO).

We now show that (ANB)U(ANC) C AN(BUC): Suppose z € (ANB)U(ANC). Then
eitherz e ANBorxe ANC. Ifr€e ANB,thenx € Aandx € B,soxz € AN(BUCQC).
Ifxe ANC,thenz € Aand z € C,soxz € AN(BUC). Hence x € AN (BUC), so
(ANB)U(ANC)CcAn(BUC). Thus AN(BUC)=(ANB)U(ANC).

Example We let R represent the set of all real numbers and Z represent the set of all
integers. R x R = R? is the Cartesian plane, that is,

RxR={(z,y): z € R,y € R}.

Similarly,
ZXxZ={(m,n):meZ,necl}.

2.2 Equivalence relations

Definition Given a set S, a binary relation on S is a subset of S x S.

Note: If R C S x S is a binary relation and (z,y) € R, then we say = and y are related and
write, generically, x ~ y (for certain specific binary relations we may use a symbol other
than ~).

Example If T ={(z,y):z € R,y € R,x <y}, then T is a binary relation on R.

Example IfE = {(a,b):a € Z,y € Z,a—b is divisible by 2}, then F is a binary relation
on Z.

Definition We say a binary relation on a set S is reflexive if for every a € S, a ~ a;
symmetric if for every a € S and b € S, a ~ b implies b ~ a; and transitive if for every
ac€e S, beS,andce S, a~band b~ cimply a ~ c. A binary relation is an equivalence
relation if it is reflexive, symmetric, and transitive.

Example The binary relation T = {(x,y) : z € R,y € R,z < y} is transitive, but
neither reflexive nor symmetric.
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Example The binary relation £ = {(a,b) : a € Z,y € Z,a — b is divisible by 2} is an
equivalence relation: It is reflexive since for any a € S,

a—a=2-0;

symmetric since if a ~ b, then a — b = 2k for some integer k, from which it follows that
b —a = 2(—k); and transitive since if a ~ b and b ~ ¢, then a — b = 2k for some integer k
and b — ¢ = 2m for some integer m, and so

a—c=(a—>b)+ (b—c)=2k+2m=2(k+m).

Note: More generally, for integers a, b, and n, we write a = b(n) to indicate that a — b is
divisible by n, in which case we say that a is equivalent to b modulo n.

Definition Given an equivalence relation on a set S, the equivalence class of s € S is

the set
[s] ={z:2 € S,z ~ s}

Example For integers a and b, let a ~ b if a = b(2). Then

l={x:z€Z;xisodd} =[3]=1[5]="--

and

O ={zx:z€Z;xiseven} =[2] =[4] =---
Theorem Given an equivalence relation on S, if @ € S and b € S, then either [a] = [b]
or [a] N [b] = 0.

Proof Suppose [a] N [b] # 0. Let = € [a]. Since [a] N [b] # 0, there exists a z such that
a ~ z and b ~ z. Since x ~ a, it follows that © ~ z. Hence x ~ z and z ~ b, so x ~ b.
Thus = € [b] and [a] C [b]. Similarly, if z € [b], then z ~ b, b ~ z, and z ~ a, so & ~ a.
Thus z € [a], and so [b] C [a]. Hence [a] = [b].

2.3 Functions

Definition If f:S5 — T is a function, then the image of f is the set
Im(f)={t:teT,t= f(s) for some s € S}.

We say f is surjective if Im(f) = T. We say f is injective if for every a and b in S,

f(a) = f(b) implies a = b. We say f is a bijection, or a one-to-one correspondence, if it is
both surjective and injective.
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Example f:R — (0,00) given by f(t) = e’ is a bijection. It is surjective because if
s € (0,00), then s = e* where t = log(s); it is injective because if f(a) = f(b), then e® = €,

from which it follows that a = b.

Example f:R — R given by
1

o) =1ve

is neither injective nor surjective. It is not injective because, for example, f(—2) = f(2);
it is not surjective because, for example, 0 ¢ Im(f).

Theorem If f:S5 — T and g:T — V are both surjections, then go f : S — V is also a
surjection.

Proof If v € V, then, since g is surjective, there exists a t € T' for which ¢(t) = v. Now
since f is surjective, there exists an s € S for which f(s) =t¢. Then

go f(s) =g(f(s)) = g(t) = v,
so v € Im(g o f). Hence g o f is a surjection.

Notation: Given a set S, we let idg : S — S denote the identity function, that is, the
function defined by idg(s) = s for all s € S.

Definition If f: S — T is a bijection, then we call the function g : T' — S defined by
g(t) = s, where s is the unique element of S with the property that f(s) = ¢, the inverse
of f, which we denote f~!.

Theorem A function f : S — T is a bijection if and only if there exists a function
g:T — S such that go f =idg and f o g =idyp.

Proof If f is a bijection, then let g = f~1.

Now suppose there exists a function g : T' — S such that go f =idg and fog = idy. Given
t €T, let s =g(t). Then f(s) = f(g(t)) = t, so f is surjective. Suppose f(a) = f(b).
Then g(f(a) = g(f(b)), and so a = b. Thus f is injective. Hence f is a bijection.



