Lecture 2: Sets and Functions

2.1 Sets

We call a collection of objects a set. Technically, a set is an undefined object satisfying certain axioms, but this loose definition is sufficient for our purposes. We will insist that a set be defined using a well-defined property which determines whether a particular object is in the set or not.

Notation:

- If S is a set, we write $x \in S$ to indicate that x is an element of S and $T \subset S$ to indicate that T is a subset of S (that is, if $x \in T$, then $x \in S$). Of course, $x \notin S$ means x is not an element of S. Note that $S=T$ if and only if $S \subset T$ and $T \subset S$.
- If A and B are sets, then

$$
A \cup B=\{x: x \in A \text { or } x \in B\}
$$

is the union of A and B,

$$
A \cap B=\{x: x \in A \text { and } x \in B\}
$$

is the intersection of A and B, and

$$
A-B=\{x: x \in A \text { and } x \notin B\}
$$

is the difference of A and B.

- \emptyset is the empty set, that is, the set with no elements. Note that given any set $S, \emptyset \subset S$.
- If $A \cap B=\emptyset$, we say A and B are disjoint.
- If A and B are sets, then

$$
A \times B=\{(a, b): a \in A, b \in B\}
$$

is the Cartesian product of A and B.
Example If $A=\{1,2\}$ and $B=\{2,3,4\}$, then

$$
\begin{gathered}
A \cup B=\{1,2,3,4\}, \\
A \cap B=\{2\}, \\
A-B=\{1\},
\end{gathered}
$$

$$
B-A=\{3,4\}
$$

and

$$
A \times B=\{(1,2),(1,3),(1,4),(2,2),(2,3),(2,4)\}
$$

Example We will show that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
We first show that $A \cap(B \cup C) \subset(A \cap B) \cup(A \cap C)$: Let $x \in A \cap(B \cup C)$. Then $x \in A$ and $x \int B \cup C$. If $x \in B$, then $x \in A \cap B$; if $x \in C$, then $x \in A \cap C$. Hence $x \in(A \cap B) \cup(A \cap C)$, so $A \cap(B \cup C) \subset(A \cap B) \cup(A \cap C)$.

We now show that $(A \cap B) \cup(A \cap C) \subset A \cap(B \cup C)$: Suppose $x \in(A \cap B) \cup(A \cap C)$. Then either $x \in A \cap B$ or $x \in A \cap C$. If $x \in A \cap B$, then $x \in A$ and $x \in B$, so $x \in A \cap(B \cup C)$. If $x \in A \cap C$, then $x \in A$ and $x \in C$, so $x \in A \cap(B \cup C)$. Hence $x \in A \cap(B \cup C)$, so $(A \cap B) \cup(A \cap C) \subset A \cap(B \cup C)$. Thus $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

Example We let \mathbb{R} represent the set of all real numbers and \mathbb{Z} represent the set of all integers. $\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}$ is the Cartesian plane, that is,

$$
\mathbb{R} \times \mathbb{R}=\{(x, y): x \in \mathbb{R}, y \in \mathbb{R}\}
$$

Similarly,

$$
\mathbb{Z} \times \mathbb{Z}=\{(m, n): m \in \mathbb{Z}, n \in \mathbb{Z}\}
$$

2.2 Equivalence relations

Definition Given a set S, a binary relation on S is a subset of $S \times S$.
Note: If $R \subset S \times S$ is a binary relation and $(x, y) \in R$, then we say x and y are related and write, generically, $x \sim y$ (for certain specific binary relations we may use a symbol other than \sim).

Example If $T=\{(x, y): x \in \mathbb{R}, y \in \mathbb{R}, x<y\}$, then T is a binary relation on \mathbb{R}.
Example If $E=\{(a, b): a \in \mathbb{Z}, y \in Z, a-b$ is divisible by 2$\}$, then E is a binary relation on \mathbb{Z}.

Definition We say a binary relation on a set S is reflexive if for every $a \in S, a \sim a$; symmetric if for every $a \in S$ and $b \in S, a \sim b$ implies $b \sim a$; and transitive if for every $a \in S, b \in S$, and $c \in S, a \sim b$ and $b \sim c$ imply $a \sim c$. A binary relation is an equivalence relation if it is reflexive, symmetric, and transitive.

Example The binary relation $T=\{(x, y): x \in \mathbb{R}, y \in \mathbb{R}, x<y\}$ is transitive, but neither reflexive nor symmetric.

Example The binary relation $E=\{(a, b): a \in \mathbb{Z}, y \in Z, a-b$ is divisible by 2$\}$ is an equivalence relation: It is reflexive since for any $a \in S$,

$$
a-a=2 \cdot 0
$$

symmetric since if $a \sim b$, then $a-b=2 k$ for some integer k, from which it follows that $b-a=2(-k)$; and transitive since if $a \sim b$ and $b \sim c$, then $a-b=2 k$ for some integer k and $b-c=2 m$ for some integer m, and so

$$
a-c=(a-b)+(b-c)=2 k+2 m=2(k+m) .
$$

Note: More generally, for integers a, b, and n, we write $a \equiv b(n)$ to indicate that $a-b$ is divisible by n, in which case we say that a is equivalent to b modulo n.

Definition Given an equivalence relation on a set S, the equivalence class of $s \in S$ is the set

$$
[s]=\{x: x \in S, x \sim s\} .
$$

Example For integers a and b, let $a \sim b$ if $a \equiv b(2)$. Then

$$
[1]=\{x: x \in \mathbb{Z} ; x \text { is odd }\}=[3]=[5]=\cdots
$$

and

$$
[0]=\{x: x \in \mathbb{Z} ; x \text { is even }\}=[2]=[4]=\cdots
$$

Theorem Given an equivalence relation on S, if $a \in S$ and $b \in S$, then either $[a]=[b]$ or $[a] \cap[b]=\emptyset$.

Proof \quad Suppose $[a] \cap[b] \neq \emptyset$. Let $x \in[a]$. Since $[a] \cap[b] \neq \emptyset$, there exists a z such that $a \sim z$ and $b \sim z$. Since $x \sim a$, it follows that $x \sim z$. Hence $x \sim z$ and $z \sim b$, so $x \sim b$. Thus $x \in[b]$ and $[a] \subset[b]$. Similarly, if $x \in[b]$, then $x \sim b, b \sim z$, and $z \sim a$, so $x \sim a$. Thus $x \in[a]$, and so $[b] \subset[a]$. Hence $[a]=[b]$.

2.3 Functions

Definition If $f: S \rightarrow T$ is a function, then the image of f is the set

$$
\operatorname{Im}(f)=\{t: t \in T, t=f(s) \text { for some } s \in S\}
$$

We say f is surjective if $\operatorname{Im}(f)=T$. We say f is injective if for every a and b in S, $f(a)=f(b)$ implies $a=b$. We say f is a bijection, or a one-to-one correspondence, if it is both surjective and injective.

Example $\quad f: \mathbb{R} \rightarrow(0, \infty)$ given by $f(t)=e^{t}$ is a bijection. It is surjective because if $s \in(0, \infty)$, then $s=e^{t}$ where $t=\log (s)$; it is injective because if $f(a)=f(b)$, then $e^{a}=e^{b}$, from which it follows that $a=b$.

Example $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)=\frac{1}{1+x^{2}}
$$

is neither injective nor surjective. It is not injective because, for example, $f(-2)=f(2)$; it is not surjective because, for example, $0 \notin \operatorname{Im}(f)$.

Theorem If $f: S \rightarrow T$ and $g: T \rightarrow V$ are both surjections, then $g \circ f: S \rightarrow V$ is also a surjection.

Proof If $v \in V$, then, since g is surjective, there exists a $t \in T$ for which $g(t)=v$. Now since f is surjective, there exists an $s \in S$ for which $f(s)=t$. Then

$$
g \circ f(s)=g(f(s))=g(t)=v
$$

so $v \in \operatorname{Im}(g \circ f)$. Hence $g \circ f$ is a surjection.
Notation: Given a set S, we let $\operatorname{id}_{S}: S \rightarrow S$ denote the identity function, that is, the function defined by $\operatorname{id}_{S}(s)=s$ for all $s \in S$.

Definition If $f: S \rightarrow T$ is a bijection, then we call the function $g: T \rightarrow S$ defined by $g(t)=s$, where s is the unique element of S with the property that $f(s)=t$, the inverse of f, which we denote f^{-1}.

Theorem A function $f: S \rightarrow T$ is a bijection if and only if there exists a function $g: T \rightarrow S$ such that $g \circ f=\operatorname{id}_{S}$ and $f \circ g=\operatorname{id}_{T}$.

Proof If f is a bijection, then let $g=f^{-1}$.
Now suppose there exists a function $g: T \rightarrow S$ such that $g \circ f=\mathrm{id}_{S}$ and $f \circ g=\mathrm{id}_{T}$. Given $t \in T$, let $s=g(t)$. Then $f(s)=f(g(t))=t$, so f is surjective. Suppose $f(a)=f(b)$. Then $g(f(a)=g(f(b))$, and so $a=b$. Thus f is injective. Hence f is a bijection.

