Lecture 19: Congruence Theorems

19.1 Congruence theorems

Definition A protractor geometry satisfies the Angle-Side-Angle Axiom (ASA) if, given $\triangle A B C$ and $\triangle D E F, \angle A \simeq \angle D, \overline{A B} \simeq \overline{D E}$, and $\angle B \simeq \angle E$ imply $\triangle A B C \simeq \triangle D E F$.

Theorem A neutral geometry satisfies Angle-Side-Angle.
Proof Given $\triangle A B C$ and $\triangle D E F$ with $\angle A \simeq \angle D, \overline{A B} \simeq \overline{D E}$, and $\angle B \simeq \angle E$, let G be a point on $\overrightarrow{D F}$ with $\overline{D G} \simeq \overline{A C}$. Then $\triangle B A C \simeq \triangle E D G$ by Side-Angle-Side. In particular, $\angle A B C \simeq \angle D E G$. But $\angle A B C \simeq \angle D E F$, so $\angle D E G \simeq \angle D E F$. Now G and F are on the same side of $\overleftrightarrow{D E}$ (since $G \in \overrightarrow{D F}$), it follows that $\overrightarrow{E F}=\overrightarrow{E G}$. Thus

$$
\{F\}=\overrightarrow{E F} \cap \overrightarrow{D F}=\overrightarrow{E G} \cap \overrightarrow{D F}=\{G\}
$$

so $G=F$ and $\triangle B A C \simeq \triangle E D F$. Hence $\triangle A B C \simeq \triangle D E F$.
Theorem Given $\triangle A B C$ in a neutral geometry with $\angle A \simeq \angle C$, then $\overline{A B} \simeq \overline{C B}$. In particular, $\triangle A B C$ is isosceles.

Proof See homework.

Definition A protractor geometry satisfies the Side-Side-Side Axiom (ASA) if, given $\triangle A B C$ and $\triangle D E F, \overline{A B} \simeq \overline{D E}, \overline{B C} \simeq \overline{E F}$, and $\overline{C A} \simeq \overline{F D}$ imply $\triangle A B C \simeq \triangle D E F$.

Theorem A neutral geometry satisfies Side-Side-Side.
Proof Given $\triangle A B C$ and $\triangle D E F$ with $\overline{A B} \simeq \overline{D E}, \overline{B C} \simeq \overline{E F}$, and $\overline{C A} \simeq \overline{F D}$, let B^{\prime} be a point on the opposite side of $\overleftrightarrow{A C}$ as B with $m\left(\angle C A B^{\prime}\right)=m(\angle F D E)$ and $\overline{A B^{\prime}} \simeq \overline{D E}$ (and so $\overline{A B^{\prime}} \simeq \overline{A B}$). Then $\triangle C A B^{\prime} \simeq \triangle F D E$ by Side-Angle-Side. Hence we need show only that $\triangle A B^{\prime} C \simeq \triangle A B C$.

Let G be the such that $\overline{B B^{\prime}} \cap \overleftrightarrow{A C}=\{G\}$. Then $G-A-C, G=A, A-G-C, G=C$, or $A-C-G$. We will consider the first case, the second and third cases are left to the homework, the fourth case is the same as the second case, and the fifth case is the same as the first case. So suppose $G-A-C$. Then $\triangle B A B^{\prime}$ is isosceles ($\overline{A B} \simeq \overline{A B^{\prime}}$), so $\angle A B B^{\prime} \simeq \angle A B^{\prime} B$. Moreover, $\triangle B C B^{\prime}$ is isosceles (since $\overline{B^{\prime} C} \simeq \overline{E F} \simeq \overline{B C}$), so $\angle C B B^{\prime} \simeq \angle C B^{\prime} B$. Since $A \in \operatorname{int} \angle C B B^{\prime}$ and $A \in \operatorname{int} \angle C B B^{\prime}$, it follows, from the Angle Subtraction Theorem, that $\angle C B A \simeq \angle C B^{\prime} A$.

Hence we now have $\overline{A B} \simeq \overline{A B^{\prime}}, \angle A B C \simeq \angle A B^{\prime} C$, and $\overline{B C} \simeq \overline{B^{\prime} C}$. Thus $\triangle A B C \simeq$ $\triangle A B^{\prime} C$, and so $\triangle A B C \simeq \triangle D E F$.

Theorem If a protractor geometry satisfies Angle-Side-Angle, then it satisfies Side-Angle-Side.

Proof See homework
Theorem Given a line ℓ and a point P not on ℓ in a neutral geometry, then there exists at least one line through P perpendicular to ℓ.

Proof Let A and C be distinct points on ℓ. Let Q be the unique point on the opposite side of $\overleftrightarrow{A C}$ as P such that $\angle C A Q \simeq \angle C A P$ and $\overline{A Q} \simeq \overline{A P}$. Let G be the point such that $\overrightarrow{P Q} \cap \overleftrightarrow{A C}=\{G\}$.

If $G=A$, the $\angle C A Q$ and $\angle C A P$ form a linear pair; since they are congruent, we must have

$$
m(\angle C A Q)=m(\angle C A P)=90
$$

Hence $\overleftrightarrow{P Q} \perp \ell$.
If $G \neq A$, then $\triangle P A G \simeq \triangle Q A G$ by Side-Angle-Side. Then $\angle A G P \simeq \angle A G Q$; since $\angle A G P$ and $\angle A G Q$ form a linear pair, it follows that

$$
m(\angle A G P)=m(\angle A G Q)=90
$$

Hence $\overleftrightarrow{P Q} \perp \ell$.

