Lecture 18: Side-Angle-Side

18.1 Congruence

Notation: Given $\triangle A B C$, we will write $\angle A$ for $\angle B A C, \angle B$ for $\angle A B C$, and $\angle C$ for $\angle B C A$ if the meaning is clear from the context.

Definition In a protractor geometry, we write $\triangle A B C \simeq \triangle D E F$ if

$$
\overline{A B} \simeq \overline{D E}, \quad \overline{B C} \simeq \overline{E F}, \quad \overline{C A} \simeq \overline{F D},
$$

and

$$
\angle A \simeq \angle D, \quad \angle B \simeq \angle E, \quad \angle C \simeq \angle F .
$$

Definition In a protractor geometry, if $\triangle A B C \simeq \triangle D E F, \triangle A C B \simeq \triangle D E F, \triangle B A C \simeq$ $\triangle D E F, \triangle B C A \simeq \triangle D E F, \triangle C A B \simeq \triangle D E F$, or $\triangle C B A \simeq \triangle D E F$, we say $\triangle A B C$ and $\triangle D E F$ are congruent

Example In the Taxicab Plane, let $A=(0,0), B=(-1,1), C=(1,1), D=(5,0)$, $E=(5,2)$, and $F=(7,0)$. Then

$$
\begin{aligned}
A B & =2=D E, \\
A C & =2=D F, \\
m(\angle A)=90 & =m(\angle D), \\
m(\angle B)=45 & =m(\angle E),
\end{aligned}
$$

and

$$
m(\angle C)=45=m(\angle F),
$$

and so $\overline{A B} \simeq \overline{D E}, \overline{A C} \simeq \overline{D F}, \angle A \simeq \angle D, \angle B \simeq \angle E$, and $\angle C \simeq \angle F$. However,

$$
B C=2 \neq 4=E F .
$$

Thus $\overline{B C}$ and $\overline{E F}$ are not congruent, and so $\triangle A B C$ and $\triangle D E F$ are not congruent.

18.2 Side-angle-side

Definition A protractor geometry satisfies the Side-Angle-Side Axiom (SAS) if, given $\triangle A B C$ and $\triangle D E F, \overline{A B} \simeq \overline{D E}, \angle B \simeq \angle E$, and $\overline{B C} \simeq \overline{E F}$ imply $\triangle A B C \simeq \triangle D E F$.

Definition We call a protractor geometry satisfying the Side-Angle-Side Axiom a neutral geometry, also called an absolute geometry.

Example We will show that the Euclidean Plane is a neutral geometry. First recall the Law of Cosines: Given any triangle $\triangle A B C$ in the Euclidean Plane,

$$
A C^{2}=A B^{2}+B C^{2}-2(A B)(B C) \cos \left(m_{E}(\angle B)\right)
$$

Note that, in particular, the measure of any angle of a triangle in the Euclidean Plane is determined by the lengths of the sides of the triangle. Hence given $\triangle A B C$ and $\triangle D E F$ with $\overline{A B} \simeq \overline{D E}, \angle B \simeq E$, and $\overline{B C} \simeq \overline{E F}$, we need show only that $\overline{A C} \simeq \overline{D F}$ to conclude that $\triangle A B C \simeq \triangle D E F$. Now

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2}-2(A B)(B C) \cos \left(m_{E}(\angle B)\right) \\
& =D E^{2}+E F^{2}-2(D E)(E F) \cos \left(m_{E}(\angle E)\right) \\
& =D F^{2},
\end{aligned}
$$

so $A C=D F$. Thus $\overline{A C} \simeq \overline{D F}$.

Example The Poincaré Plane is a neutral geometry. We will omit the proof, which is more easily done with the help of an axiom about isometries of the plane which is equivalent to the Side-Angle-Side Axiom.

18.3 Isosceles triangles

Definition In a protractor geometry, we say a triangle with two congruent sides is isosceles. We say a triangle which is not isosceles is scalene. It $\triangle A B C$ is isosceles with $\overline{A B} \simeq \overline{B C}$, then we call $\angle A$ and $\angle B$ the base angles of $\triangle A B C$. We say a triangle with all three sides congruent is equilateral.

Pons Asinorum In a neutral geometry, the base angles of an isosceles triangle are congruent.

Proof Consider a triangle $\triangle A B C$ with $\overline{A B} \simeq \overline{B C}$. Then $\overline{A B} \simeq \overline{C B}, \angle A B C \simeq \angle C B A$, and $\overline{B C} \simeq \overline{B A}$. Hence, by Side-Angle-Side, $\triangle A B C \simeq \triangle C B A$. In particular, $\angle B A C \simeq$ $\angle B C A$.

