Lecture 17: Complementary and Supplementary Angles

17.1 Complementary and supplementary angles

Definition In a protractor geometry $\{\mathcal{P}, \mathcal{L}, d, m\}$, we say $\angle A B C$ is an acute angle if $m(\angle A B C)<90$, a right angle if $m(\angle A B C)=90$, and an obtuse angle if $m(\angle A B C)>90$. We say angles $\angle A B C$ and $\angle D E F$ are supplementary if

$$
m(\angle A B C)+m(\angle D E F)=180
$$

and we say angles $\angle A B C$ and $\angle D E F$ are complementary if

$$
m(\angle A B C)+m(\angle D E F)=90 .
$$

We say $\angle A B C$ and $\angle C B D$ form a linear pair if $A-B-D$ and $\angle A B C$ and $\angle D B F$ form a vertical pair if either $A-B-D$ and $C-B-F$ or $A-B-F$ and $C-B-D$.

Theorem Suppose C and D are points in a protractor geometry on the same side of $\overleftrightarrow{A B}$. If $m(\angle A B C)<m(\angle A B D)$, then $C \in \operatorname{int}(\angle A B D)$.

Proof We need only show that C and A are on the same side of $\overleftrightarrow{B D}$. Note first that $C \notin \overleftrightarrow{B D}$ since, if $C \in \overleftrightarrow{B D}$, then $C \in \overrightarrow{B D}$ and $\angle A B D=\angle A B C$, from which it would follow that $m(\angle A B D)=m(\angle A B C)$.

Suppose C and A are on opposite sides of $\overleftrightarrow{B D}$. Then $D \in \operatorname{int}(\angle A B C)$, so

$$
m(\angle A B C)=m(\angle A B D)+m(\angle D B C)>m(\angle A B D)
$$

contradicting our assumption that $m(\angle A B C)<m(\angle A B D)$. Hence we must have C and A on the same side of $\overleftrightarrow{B D}$, and so $C \in \operatorname{int}(\angle A B D)$.

Linear Pair Theorem In a protractor geometry, angles which form a linear pair are supplementary.

Proof Suppose $\angle A B C$ and $\angle C B D$ form a linear pair. Let

$$
\alpha=m(\angle A B C)
$$

and

$$
\beta=m(\angle C B D) .
$$

We need to show that $\alpha+\beta=180$.

Suppose $\alpha+\beta<180$. Then there exists a ray $\overrightarrow{B E}$ with E on the same side of $\overleftrightarrow{A B}$ as C such that $m(\angle A B E)=\alpha+\beta$. Now $C \in \operatorname{int}(\angle A B E)($ since $m(\angle A B C)<m(\angle A B E))$, so

$$
\alpha+\beta=m(\angle A B E)=m(\angle A B C)+m(\angle C B E)=\alpha+m(\angle C B E)
$$

Hence $m(\angle C B E)=\beta$. Moreover, $E \in \operatorname{int}(\angle C B D)$, so

$$
\beta=m(\angle C B D)=m(\angle C B E)+m(\angle E B D)=\beta+m(\angle E B D)
$$

which implies $m(\angle E B D)=0$, a contradiction. Hence $\alpha+\beta \geq 180$.
Suppose $\alpha+\beta>180$. Then there exists a ray $\overrightarrow{B F}$ with F on the same side of $\overleftrightarrow{A B}$ as C such that $m(\angle A B F)=\alpha+\beta-180$. Now

$$
\alpha+\beta-180=\alpha-(180-\beta)<\alpha
$$

since $180-\beta>0$. Hence $F \in \operatorname{int}(\angle A B C)$. Thus

$$
\alpha=m(\angle A B C)=m(\angle A B F)+m(\angle C B F)=\alpha+\beta-180+m(\angle C B F)
$$

so $m(\angle C B F)=180-\beta$. Moreover, $C \in \operatorname{int}(\angle F B D)$, so

$$
m(\angle F B D)=m(\angle F B C)+m(\angle C B D)=(180-\beta)+\beta=180
$$

which is a contradiction. Hence $\alpha+\beta=180$.
Theorem If, in a protractor geometry,

$$
m(\angle A B C)+m(\angle C B D)=m(\angle A B D)
$$

then $C \in \operatorname{int}(\angle A B D)$.
Proof Since

$$
m(\angle A B C)<m(\angle A B D)
$$

it follows from an earlier result that we need only show that C and D are on the same side of $\overleftrightarrow{A B}$. Suppose C and D lie on opposite sides of $\overleftrightarrow{A B}$. Now if A and D are on the same side of $\overleftrightarrow{B C}$, then $A \in \operatorname{int}(\angle C B D)$. Hence

$$
m(\angle C B D)=m(\angle A B C)+m(\angle A B D)
$$

But $m(\angle A B D)>m(\angle(C B D)$, so this is a contradiction.
If A and D are on the opposite sides of $\overleftrightarrow{B C}$, let E be a point such that $E-B-A$. Then E and D are on the same side of $\overleftrightarrow{B C}$, and so

$$
m(\angle C B E)+m(\angle E B D)=m(\angle C B D)
$$

Now $\angle A B C$ and $\angle C B E$ are a linear pair, so

$$
m(\angle C B E)=180-m(\angle A B C) .
$$

Hence

$$
180-m(\angle A B C)+m(\angle E B D)=m(\angle C B D)
$$

and so

$$
180+m(\angle E B D)=m(\angle A B C)+m(\angle C B D)=m(\angle A B D) .
$$

But this would mean $m(\angle A B D)>180$, a contradiction. Hence we must have C and D on the same side of $\overleftrightarrow{A B}$.

Theorem If, in a protractor geometry, A and D lie on opposite sides of $\overleftrightarrow{B C}$ and $m(\angle A B C)+m(\angle C B D)=180$, then $A-B-D$, that is, $\angle A B C$ and $\angle C B D$ form a linear pair.

Proof See homework.

17.2 Perpendicular lines

Definition We say lines ℓ and m in a protractor geometry are perpendicular, denoted $\ell \perp m$, if $\ell \cup m$ contains a right angle. We say two rays or segments are perpendicular if the lines they determine are perpendicular.

Theorem Given a line ℓ and a point $P \in \ell$ in a protractor geometry, there exists a unique line m through P which is perpendicular to ℓ.

Proof See homework.

Theorem Given a segment $\overline{A B}$ in a protractor geometry, there exists a unique line ℓ such that $\ell \perp \overline{A B}$ and $\ell \cap \overline{A B}=\{M\}$ where $A M=M B$.

Proof See homework.
We call the point M in the previous theorem the midpoint of $\overline{A B}$ and we call ℓ the perpendicular bisector of $\overline{A B}$.

Theorem Given an angle $\angle A B C$ in a protractor geometry, there exists a unique ray $\overrightarrow{B D}$ with $D \in \operatorname{int}(\angle A B C)$ and $m(\angle A B D)=m(\angle D B C)$.

Proof See homework.
We call $\overrightarrow{B D}$ in the previous theorem the angle bisector of $\angle A B C$.

17.3 Angle congruence

Definition In a protractor geometry, we say angles $\angle A B C$ and $\angle D E F$ are congruent, denoted

$$
\angle A B C \simeq \angle D E F,
$$

if $m(\angle A B C)=m(\angle D E F)$.
Vertical Angle Theorem If, in a protractor geometry, $\angle A B C$ and $\angle D B F$ form a vertical pair, then $\angle A B C \simeq \angle D B F$.

Proof See homework
Angle Construction Theorem Given $\angle A B C$ and a ray $\overrightarrow{E D}$ which lies on the edge of a half plane H in a protractor geometry, then there exists a unique ray $\overrightarrow{E F}$ with $F \in H$ such that $\angle D E F \simeq \angle A B C$.

Proof See homework.

Angle Addition Theorem If, in a protractor geometry, $D \in \operatorname{int}(\angle A B C), S \in \operatorname{int}(P Q R)$, $\angle A B D \simeq \angle P Q S$, and $\angle D B C \simeq \angle S Q R$, then $\angle A B C \simeq \angle P Q R$.

Proof See homework.

Angle Subtraction Theorem If, in a protractor geometry, $D \in \operatorname{int}(\angle A B C), S \in$ $\operatorname{int}(P Q R), \angle A B D \simeq \angle P Q S$, and $\angle A B C \simeq \angle P Q R$, then $\angle D B C \simeq \angle S Q R$.

