Lecture 16: The Moulton Plane

16.1 The Moulton plane

Example Given $b, m \in \mathbb{R}, m>0$, let

$$
M_{m, b}=\left\{(x, y):(x, y) \in \mathbb{R}^{2}, y=m x+b \text { for } x \leq 0, y=\frac{m}{2} x+b \text { for } x>0\right\} .
$$

Let
$\mathcal{L}_{M}=\left\{L_{a}: L_{a} \in \mathcal{L}_{E}, a \in \mathbb{R}\right\} \cup\left\{L_{m, b}: L_{m, b} \in \mathcal{L}_{E}, m \leq 0, b \in \mathbb{R}\right\} \cup\left\{M_{m, b}: m>0, b \in \mathbb{R}\right\}$.
Given distinct points $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$ in \mathbb{R}^{2} with $x_{1} \leq x_{2}$, then

$$
\overleftrightarrow{A B}=L_{a}
$$

if $x_{1}=x_{2}=a$ and

$$
\overleftrightarrow{A B}=L_{m, b}
$$

if $x_{1}<x_{2}, y_{2} \leq y_{1}$,

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}},
$$

and

$$
b=y_{1}-m x_{1} .
$$

Now suppose $y_{2}>y_{1}$. If $x_{1}<x_{2} \leq 0$, then

$$
\overleftrightarrow{A B}=M_{m, b}
$$

and if $0 \leq x_{1}<x_{2}$,

$$
\overleftrightarrow{A B}=M_{2 m, b}
$$

where m and b are as above. Now if $x_{1}<0<x_{2}$, we need to find m and b so that

$$
y_{1}=m x_{1}+b
$$

and

$$
y_{2}=\frac{m}{2} x_{2}+b .
$$

Subtracting and solving for m, we have

$$
m=\frac{y_{2}-y_{1}}{\frac{1}{2} x_{2}-x_{1}} .
$$

Hence, with $b=y_{1}-m x_{1}$,

$$
\overleftrightarrow{A B}=M_{m, b}
$$

To define distance, we first let

$$
d_{M}(P, Q)=d_{E}(P, Q)
$$

if either $P=Q$ or $\overleftrightarrow{P Q} \in \mathcal{L}_{E}$. If $P, Q \in M_{m, b}$ for some $m>0$ and $b \in \mathbb{R}, P=\left(x_{1}, y_{1}\right)$, $Q=\left(x_{2}, y_{2}\right)$, we let

$$
d_{M}(P, Q)= \begin{cases}d_{E}(P, Q), & \text { if } x_{1} x_{2} \geq 0 \\ d_{E}(P,(0, b))+d_{E}((0, b), Q), & \text { otherwise }\end{cases}
$$

Given a line in $\ell \in \mathcal{L}_{M}$, we define a ruler $f: \ell \rightarrow \mathbb{R}$ by

$$
f(x, y)=y
$$

if $\ell=L_{a} \in \mathcal{L}_{E}$ for some $a \in \mathbb{R}$;

$$
f(x, y)=x \sqrt{1+m^{2}}
$$

if $\ell=L_{m, b} \in L_{E}$ for some $m, b \in \mathbb{R}, m \leq 0$; and

$$
f(x, y)= \begin{cases}x \sqrt{1+m^{2}}, & \text { if } x \leq 0 \\ x \sqrt{1+\frac{m^{2}}{4}}, & \text { if } x>0\end{cases}
$$

if $\ell=M_{m, b}$ for some $m, b \in \mathbb{R}, m>0$.
Now suppose $A, B, C \in \mathbb{R}^{2}$ are noncollinear. If $B \notin L_{0}$, we define

$$
m_{M}(\angle A B C)=m_{E}\left(\angle A^{\prime} B C^{\prime}\right)
$$

where $A^{\prime} \in \overrightarrow{B A}$ and $C^{\prime} \in \overrightarrow{B C}$ such that A, B, and C all lie on the same side of L_{0}. If $B=(0, b)$ and $P=(x, y)$, let

$$
P_{b}= \begin{cases}(x, 2 y-b), & \text { if } x>0 \text { and } y>b, \\ (x, y), & \text { otherwise }\end{cases}
$$

Then we define

$$
m_{M}(\angle A B C)=m_{E}\left(\angle A_{b} B C_{b}\right)
$$

Note that

$$
2 y-b=b+2\left(\frac{y-b}{x}\right) x
$$

putting P_{b} where P would have been if the line $\overleftrightarrow{B P}$ had not been bent at B.
With all these definitions, $\left\{\mathbb{R}^{2}, \mathcal{L}_{M}, d_{M}, m_{M}\right\}$ is a protractor geometry, which we call the Moulton Plane.

Example Let $A=(-2,1), B=(0,0)$, and $C=(1,2)$ be points in the Moulton Plane. Then

$$
\begin{gathered}
\overleftrightarrow{A B}=L_{-\frac{1}{2}, 0} \\
\overleftrightarrow{B C}=M_{4,0} \\
\overleftrightarrow{A C}=M_{\frac{2}{5}, \frac{9}{5}} \\
A B=\sqrt{5} \\
B C=\sqrt{5} \\
A C=d_{E}\left((-2,1),\left(0, \frac{9}{5}\right)\right)+d_{E}\left(\left(0, \frac{9}{5}\right),(1,2)\right)=\frac{2 \sqrt{29}}{5}+\frac{\sqrt{26}}{5} \approx 3.1739 \\
m_{M}(\angle C A B)=\cos ^{-1}\left(\frac{\left\langle\left(2, \frac{4}{5}\right),(2,-1)\right\rangle}{\frac{2 \sqrt{29}}{5} \sqrt{5}}\right)=\cos ^{-1}\left(\frac{8}{\sqrt{145}}\right) \approx 48.37 \\
m_{M}(\angle A B C)=\cos ^{-1}\left(\frac{\langle(-2,1),(1,4)\rangle}{\sqrt{5} \sqrt{17}}\right)=\cos ^{-1}\left(\frac{2}{\sqrt{85}}\right) \approx 77.47
\end{gathered}
$$

and

$$
m_{M}(\angle A C B)=\cos ^{-1}\left(\frac{\left\langle(-1,-2),\left(-1,-\frac{1}{5}\right)\right\rangle}{\sqrt{5} \frac{\sqrt{26}}{5}}\right)=\cos ^{-1}\left(\frac{7}{\sqrt{130}}\right) \approx 52.13
$$

Note that

$$
m_{M}(\angle C A B)+m_{M}(\angle A B C)+m_{M}(\angle A C B) \approx 177.96
$$

