Lecture 14: Convex Quadrilaterals

14.1 Convex quadrilaterals

Definition Suppose $\{A, B, C, D\}$ are four distinct points in a metric geometry, no three of which are collinear, and $int(\overline{AB})$, $int(\overline{BC})$, $int(\overline{CD})$, and $int(\overline{DA})$ are disjoint. We call

 $\Box ABCD = \overline{AB} \cup \overline{BC} \cup \overline{CD} \cup \overline{DA}$

a quadrilateral.

Theorem Given a quadrilateral $\Box ABCD$ in a metric geometry, then

 $\Box ABCD = \Box BCDA = \Box CDAB = \Box DABC$ $= \Box ADCB = \Box DCBA = \Box CBAD = \Box BADC.$

If both $\Box ABCD$ and $\Box ABDC$ are quadrilaterals, then $\Box ABCD \neq \Box ABDC$.

Proof See homework.

Theorem If, in a metric geometry, $\Box ABCD = \Box PQRS$, then

 $\{A, B, C, D\} = \{P, Q, R, S\}.$

Moreover, if A = P, then C = R and either B = Q or B = S.

Definition Given a quadrilateral $\Box ABCD$, we call \overline{AB} , \overline{BC} , \overline{CD} and \overline{DA} the sides of $\Box ABCD$; A, B, C, and D the vertices of ABCD; $\angle ABC$, $\angle BCD$, $\angle CDA$, and $\angle DAB$ the angles of $\Box ABCD$; and \overline{AC} and \overline{BD} the diagonals of $\Box ABCD$. We call the endpoints of a diagonal opposite vertices, two sides which have a common vertex adjacent sides, two sides which do not have a common vertex opposite sides, two angles which contain a common side adjacent angles, and two angles which do not contain a common side opposite sides.

Definition We call $\Box ABCD$ in a Pasch geometry a *convex quadrilateral* if each side of $\Box ABCD$ lies on a half plane determined by its opposite side.

Theorem In a Pasch geometry, a quadrilateral is a convex quadrilateral if and only if the vertex of each angle is in the interior of its opposite angle.

Proof See homework.

Theorem If, in a Pasch geometry, $\Box ABCD$ is a convex quadrilateral, then $\overline{AC} \cap \overline{BD} \neq \emptyset$.

Proof Since, by the previous theorem, $D \in int(\angle ABC)$, $BD \cap \overline{AC} = \{E\}$ for some point E with A - E - C by the Crossbar Theorem. Also, $C \in int(\angle DAB)$, so, again by the Crossbar Theorem, $\overrightarrow{AC} \cap \overrightarrow{BD} = \{F\}$ for some point F with B - F - D. Since \overrightarrow{AC} intersects \overrightarrow{BD} in at most one point, E = F, and we have $\overline{AC} \cap \overline{BD} = \{E\}$.

Theorem If, in a Pasch geometry, $\Box ABCD$ is a quadrilateral and \overrightarrow{BC} is parallel to \overrightarrow{AD} , then $\Box ABCD$ is a convex quadrilateral.

Proof $\overrightarrow{BC} \cap \overrightarrow{AD} = \emptyset$, so \overrightarrow{BC} lies on one side of \overrightarrow{AD} and \overrightarrow{AD} lies on one side of \overrightarrow{BC} . Suppose \overrightarrow{AB} does not lie on one side of \overrightarrow{CD} . Then $\overrightarrow{AB} \cap \overrightarrow{CD} = \{E\}$ for some point E with A - E - B. Now if H is the side of \overrightarrow{BC} which contains \overrightarrow{AD} and G is the side of \overrightarrow{AD} which contains \overrightarrow{BC} , then $E \in H$ and $E \in G$. Since $E \in H$, we cannot have D - C - E; since $E \in G$, we cannot have C - D - E. Thus C - E - D. But then $\operatorname{int}(\overrightarrow{AB}) \cap \operatorname{int}(\overrightarrow{CD}) \neq \emptyset$, contradicting the assumption that $\Box ABCD$ is a quadrilateral. Hence \overrightarrow{AB} lies on one side of \overrightarrow{CD} . A similar argument shows that \overrightarrow{CD} lies on one side of \overrightarrow{AB} . Hence $\Box ABCD$ is a convex quadrilateral.