Lecture 14: Convex Quadrilaterals

14.1 Convex quadrilaterals

Definition Suppose $\{A, B, C, D\}$ are four distinct points in a metric geometry, no three of which are collinear, and $\operatorname{int}(\overline{A B}), \operatorname{int}(\overline{B C}), \operatorname{int}(\overline{C D})$, and $\operatorname{int}(\overline{D A})$ are disjoint. We call

$$
\square A B C D=\overline{A B} \cup \overline{B C} \cup \overline{C D} \cup \overline{D A}
$$

a quadrilateral.

Theorem Given a quadrilateral $\square A B C D$ in a metric geometry, then

$$
\begin{aligned}
\square A B C D & =\square B C D A=\square C D A B=\square D A B C \\
& =\square A D C B=\square D C B A=\square C B A D=\square B A D C .
\end{aligned}
$$

If both $\square A B C D$ and $\square A B D C$ are quadrilaterals, then $\square A B C D \neq \square A B D C$.

Proof See homework.

Theorem If, in a metric geometry, $\square A B C D=\square P Q R S$, then

$$
\{A, B, C, D\}=\{P, Q, R, S\}
$$

Moreover, if $A=P$, then $C=R$ and either $B=Q$ or $B=S$.
Definition Given a quadrilateral $\square A B C D$, we call $\overline{A B}, \overline{B C}, \overline{C D}$ and $\overline{D A}$ the sides of $\square A B C D ; A, B, C$, and D the vertices of $A B C D ; \angle A B C, \angle B C D, \angle C D A$, and $\angle D A B$ the angles of $\square A B C D$; and $\overline{A C}$ and $\overline{B D}$ the diagonals of $\square A B C D$. We call the endpoints of a diagonal opposite vertices, two sides which have a common vertex adjacent sides, two sides which do not have a common vertex opposite sides, two angles which contain a common side adjacent angles, and two angles which do not contain a common side opposite sides.

Definition We call $\square A B C D$ in a Pasch geometry a convex quadrilateral if each side of $\square A B C D$ lies on a half plane determined by its opposite side.

Theorem In a Pasch geometry, a quadrilateral is a convex quadrilateral if and only if the vertex of each angle is in the interior of its opposite angle.

Proof See homework.
Theorem If, in a Pasch geometry, $\square A B C D$ is a convex quadrilateral, then $\overline{A C} \cap \overline{B D} \neq \emptyset$.

Proof Since, by the previous theorem, $D \in \operatorname{int}(\angle A B C), \overrightarrow{B D} \cap \overline{A C}=\{E\}$ for some point E with $A-E-C$ by the Crossbar Theorem. Also, $C \in \operatorname{int}(\angle D A B)$, so, again by the Crossbar Theorem, $\overrightarrow{A C} \cap \overline{B D}=\{F\}$ for some point F with $B-F-D$. Since $\overleftrightarrow{A C}$ intersects $\overleftrightarrow{B D}$ in at most one point, $E=F$, and we have $\overline{A C} \cap \overline{B D}=\{E\}$.

Theorem If, in a Pasch geometry, $\square A B C D$ is a quadrilateral and $\overleftrightarrow{B C}$ is parallel to $\overleftrightarrow{A D}$, then $\square A B C D$ is a convex quadrilateral.

Proof $\overleftrightarrow{B C} \cap \overleftrightarrow{A D}=\emptyset$, so $\overline{B C}$ lies on one side of $\overleftrightarrow{A D}$ and $\overline{A D}$ lies on one side of $\overleftrightarrow{B C}$. Suppose $\overline{A B}$ does not lie on one side of $\overleftrightarrow{C D}$. Then $\overline{A B} \cap \overleftrightarrow{C D}=\{E\}$ for some point E with $A-E-B$. Now if H is the side of $\overleftrightarrow{B C}$ which contains $\overrightarrow{A D}$ and G is the side of $\overleftrightarrow{A D}$ which contains $\overline{B C}$, then $E \in H$ and $E \in G$. Since $E \in H$, we cannot have $D-C-E$; since $E \in G$, we cannot have $C-D-E$. Thus $C-E-D$. But then $\operatorname{int}(\overline{A B}) \cap \operatorname{int}(\overline{C D}) \neq \emptyset$, contradicting the assumption that $\square A B C D$ is a quadrilateral. Hence $\overline{A B}$ lies on one side of $\overleftrightarrow{C D}$. A similar argument shows that $\overline{C D}$ lies on one side of $\overleftrightarrow{A B}$. Hence $\square A B C D$ is a convex quadrilateral.

