Lecture 13: Interiors

13.1 Interiors

Definition If A and B are distinct points in a metric geometry, we call

$$int(AB) = AB - \{A\}$$

the *interior* of the ray \overrightarrow{AB} and we call

$$\operatorname{int}(\overline{AB}) = \overline{AB} - \{A, B\}$$

the *interior* of the segment \overline{AB} .

Theorem If A and B are distinct points in a metric geometry, then \overline{AB} , \overline{AB} , \overline{AB} , $\overline{int}(\overline{AB})$, and $int(\overline{AB})$ are all convex sets.

Proof Various homework exercises.

Theorem If, in a Pasch geometry, ℓ is a line and S is a nonempty convex set of points with $S \cap \ell = \emptyset$, then all the points in S lie on the same side of ℓ .

Proof Immediate from the definition of convex set.

Theorem Let S be a line, a ray, a segment, the interior of a ray, or the interior of a segment in a Pasch geometry. If ℓ is a line with $S \cap \ell = \emptyset$, then all of S lies on one side of ℓ . If A, B, and C are points with A - B - C and $\overrightarrow{AB} \cap \ell = \{B\}$, then $\operatorname{int}(\overrightarrow{BA})$ and $\operatorname{int}(\overrightarrow{AB})$ both lie on the same side of ℓ , while $\operatorname{int}(\overrightarrow{BA})$ and $\operatorname{int}(\overrightarrow{BC})$ lie on opposite sides of ℓ .

Proof Consequence of previous theorem and definition.

Z Theorem If, in a Pasch geometry, P and Q lie on opposite sides of a line AB, then $\overrightarrow{BP} \cap \overrightarrow{AQ} = \emptyset$.

Proof By the previous theorem, $\operatorname{int}(\overrightarrow{BP})$ and $\operatorname{int}(\overrightarrow{AQ})$ lie on opposite sides of \overrightarrow{AB} . Thus $\operatorname{int}(\overrightarrow{BP}) \cap \operatorname{int}(\overrightarrow{AQ}) = \emptyset$. Now A, B, and Q are noncollinear, so $B \notin \overrightarrow{AQ}$, and thus $\overrightarrow{BP} \cap \operatorname{int}(\overrightarrow{AQ}) = \emptyset$. Similarly, $A \notin \overrightarrow{BP}$, so $\overrightarrow{BP} \cap \overrightarrow{AQ} = \emptyset$.

Definition Given noncollinear points A, B, and C in a Pasch geometry, let H be the side of \overrightarrow{AB} which contains C and let G be the side of \overrightarrow{BC} which contains A. We call $\operatorname{int}(\angle ABC) = H \cap G$

the *interior* of $\angle ABC$.

Theorem If, in a Pasch geometry, $\angle ABC = \angle DEF$, then $int(\angle ABC) = int(\angle DEF)$.

Proof We know that B = E and either $\overrightarrow{BA} = \overrightarrow{ED}$ or $\overrightarrow{BA} = \overrightarrow{EF}$. Suppose $\overrightarrow{BA} = \overrightarrow{ED}$. Let H be the side of \overrightarrow{AB} which contains C and let G be the side of \overrightarrow{BC} which contains A. Now $D \in \overrightarrow{BA}$, so A and D are on same side of $\overrightarrow{BC} = \overrightarrow{EF}$. Hence $D \in G$. $F \in \overrightarrow{BC}$, so C and F are on the same side of $\overrightarrow{AB} = \overrightarrow{DE}$. Hence $F \in H$. Thus

$$\operatorname{int}(\angle ABC) = H \cap G = \operatorname{int}(\angle DEF).$$

Theorem In a Pasch geometry, $P \in int(\angle ABC)$ if and only if A and P are on the same side of \overrightarrow{BC} and C and P are on the same side of \overrightarrow{AB} .

Proof See homework.

Theorem In a Pasch geometry, $\operatorname{int}(\overline{AC}) \subset \operatorname{int}(\angle ABC)$.

Proof See homework.

13.2 Crossbar

Crossbar Theorem If, in a Pasch geometry, $P \in int(\angle ABC)$, then $BP \cap \overline{AC} = \{F\}$ where A - F - C.

Proof Let E be a point such that E - B - C. We first show that $\overrightarrow{BP} \cap \overline{AE} = \emptyset$. Now P and C are on the same side of \overrightarrow{AB} and C and E are on opposite sides of \overrightarrow{AB} , so P and E are on opposite sides of \overrightarrow{AB} . Hence, by the Z Theorem, $\overrightarrow{BP} \cap \overline{AE} = \emptyset$. Now let Q be a point such that Q - B - P. Then Q and P are on opposite sides of \overrightarrow{BC} and P and A are on the same side of \overrightarrow{BC} , so Q and A are on opposite sides of $\overrightarrow{BC} = \overrightarrow{EC}$. Hence, by the Z Theorem, $\overrightarrow{BQ} \cap \overline{AE} = \emptyset$. Thus $\overrightarrow{BP} \cap \overline{AE} = \emptyset$.

Applying Pasch's Postulate to $\triangle ECA$, we conclude that $\overrightarrow{BP} \cap \overrightarrow{AC} \neq \emptyset$. Since A, B, and C are noncollinear, we must have $\overrightarrow{BP} \cap \overrightarrow{AC} = \{F\}$ for some F. Now $F \neq A$ (since $\overrightarrow{BP} \cap \overrightarrow{AE} = \emptyset$) and $F \neq C$ (since $P \notin \overrightarrow{BC}$). Thus A - F - C. Finally, P and A are on the same side of \overrightarrow{BC} and A and F are on the same side of \overrightarrow{BC} , so P and F are on the same side of \overrightarrow{BC} . Hence $F \in \overrightarrow{BP}$.

Theorem If, in a Pasch geometry, $\overline{CP} \cap AB = \emptyset$, then $P \in int(\angle ABC)$ if and only if A and C are on opposite sides of \overrightarrow{BP} .

Proof See homework.

Theorem If, in a Pasch geometry, A - B - D, then $P \in int(\angle ABC)$ if and only if $C \in int(\angle DBP)$.

Proof See homework.

Definition If A, B and C are noncollinear points in a Pasch geometry and H is the side of \overrightarrow{AB} which contains C, G is the side of \overrightarrow{BC} which contains A, and I is the side of \overrightarrow{AC} which contains B, then we call

$$\operatorname{int}(\triangle ABC) = G \cap H \cap I$$

the *interior* of $\triangle ABC$.

Theorem In a Pasch geometry, $int(\triangle ABC)$ is convex.

Proof See homework.