Lecture 13: Interiors

13.1 Interiors

Definition If A and B are distinct points in a metric geometry, we call

$$
\operatorname{int}(\overrightarrow{A B})=\overrightarrow{A B}-\{A\}
$$

the interior of the ray $\overrightarrow{A B}$ and we call

$$
\operatorname{int}(\overline{A B})=\overline{A B}-\{A, B\}
$$

the interior of the segment $\overline{A B}$.
Theorem If A and B are distinct points in a metric geometry, then $\overleftrightarrow{A B}, \overrightarrow{A B}, \overrightarrow{A B}$, $\operatorname{int}(\overrightarrow{A B})$, and $\operatorname{int}(\overline{A B})$ are all convex sets.

Proof Various homework exercises.
Theorem If, in a Pasch geometry, ℓ is a line and \mathcal{S} is a nonempty convex set of points with $\mathcal{S} \cap \ell=\emptyset$, then all the points in \mathcal{S} lie on the same side of ℓ.

Proof Immediate from the definition of convex set.
Theorem Let \mathcal{S} be a line, a ray, a segment, the interior of a ray, or the interior of a segment in a Pasch geometry. If ℓ is a line with $\mathcal{S} \cap \ell=\emptyset$, then all of \mathcal{S} lies on one side of ℓ. If A, B, and C are points with $A-B-C$ and $\overleftrightarrow{A B} \cap \ell=\{B\}$, then $\operatorname{int}(\overrightarrow{B A})$ and $\operatorname{int}(\overline{A B})$ both lie on the same side of ℓ, while $\operatorname{int}(\overrightarrow{B A})$ and $\operatorname{int}(\overrightarrow{B C})$ lie on opposite sides of ℓ.

Proof Consequence of previous theorem and definition.
Z Theorem If, in a Pasch geometry, P and Q lie on opposite sides of a line $\overleftrightarrow{A B}$, then $\overrightarrow{B P} \cap \overrightarrow{A Q}=\emptyset$.

Proof By the previous theorem, $\operatorname{int}(\overrightarrow{B P})$ and $\operatorname{int}(\overrightarrow{A Q})$ lie on opposite sides of $\overleftrightarrow{A B}$. Thus $\operatorname{int}(\overrightarrow{B P}) \cap \operatorname{int}(\overrightarrow{A Q})=\emptyset$. Now A, B, and Q are noncollinear, so $B \notin \overleftrightarrow{A Q}$, and thus $\overrightarrow{B P} \cap \operatorname{int}(\overrightarrow{A Q})=\emptyset$. Similarly, $A \notin \overleftrightarrow{B P}$, so $\overrightarrow{B P} \cap \overrightarrow{A Q}=\emptyset$.

Definition Given noncollinear points A, B, and C in a Pasch geometry, let H be the side of $\overleftrightarrow{A B}$ which contains C and let G be the side of $\overleftrightarrow{B C}$ which contains A. We call

$$
\operatorname{int}(\angle A B C)=H \cap G
$$

the interior of $\angle A B C$.

Theorem If, in a Pasch geometry, $\angle A B C=\angle D E F$, then $\operatorname{int}(\angle A B C)=\operatorname{int}(\angle D E F)$.
Proof We know that $B=E$ and either $\overrightarrow{B A}=\overrightarrow{E D}$ or $\overrightarrow{B A}=\overrightarrow{E F}$. Suppose $\overrightarrow{B A}=\overrightarrow{E D}$. Let H be the side of $\overleftrightarrow{A B}$ which contains C and let G be the side of $\overleftrightarrow{B C}$ which contains A. Now $D \in \overrightarrow{B A}$, so A and D are on same side of $\overleftrightarrow{B C}=\overleftrightarrow{E F}$. Hence $D \in G . F \in \overrightarrow{B C}$, so C and F are on the same side of $\overleftrightarrow{A B}=\overleftrightarrow{D E}$. Hence $F \in H$. Thus

$$
\operatorname{int}(\angle A B C)=H \cap G=\operatorname{int}(\angle D E F)
$$

Theorem In a Pasch geometry, $P \in \operatorname{int}(\angle A B C)$ if and only if A and P are on the same side of $\overleftrightarrow{B C}$ and C and P are on the same side of $\overleftrightarrow{A B}$.

Proof See homework.
Theorem In a Pasch geometry, $\operatorname{int}(\overline{A C}) \subset \operatorname{int}(\angle A B C)$.
Proof See homework.

13.2 Crossbar

Crossbar Theorem If, in a Pasch geometry, $P \in \operatorname{int}(\angle A B C)$, then $\overrightarrow{B P} \cap \overline{A C}=\{F\}$ where $A-F-C$.

Proof Let E be a point such that $E-B-C$. We first show that $\overleftrightarrow{B P} \cap \overline{A E}=\emptyset$. Now P and C are on the same side of $\overleftrightarrow{A B}$ and C and E are on opposite sides of $\overleftrightarrow{A B}$, so P and E are on opposite sides of $\overleftrightarrow{A B}$. Hence, by the Z Theorem, $\overrightarrow{B P} \cap \overline{A E}=\emptyset$. Now let Q be a point such that $Q-B-P$. Then Q and P are on opposite sides of $\overleftrightarrow{B C}$ and P and A are on the same side of $\overleftrightarrow{B C}$, so Q and A are on opposite sides of $\overleftrightarrow{B C}=\overleftrightarrow{E C}$. Hence, by the Z Theorem, $\overrightarrow{B Q} \cap \overline{A E}=\emptyset$. Thus $\overleftrightarrow{B P} \cap \overline{A E}=\emptyset$.

Applying Pasch's Postulate to $\triangle E C A$, we conclude that $\overleftrightarrow{B P} \cap \overline{A C} \neq \emptyset$. Since A, B, and C are noncollinear, we must have $\overleftrightarrow{B P} \cap \overline{A C}=\{F\}$ for some F. Now $F \neq A$ (since $\overleftrightarrow{B P} \cap \overrightarrow{A E}=\emptyset$) and $F \neq C$ (since $P \notin \overleftrightarrow{B C}$). Thus $A-F-C$. Finally, P and A are on the same side of $\overleftrightarrow{B C}$ and A and F are on the same side of $\overleftrightarrow{B C}$, so P and F are on the same side of $\overleftrightarrow{B C}$. Hence $F \in \overrightarrow{B P}$.

Theorem If, in a Pasch geometry, $\overline{C P} \cap \overleftrightarrow{A B}=\emptyset$, then $P \in \operatorname{int}(\angle A B C)$ if and only if A and C are on opposite sides of $\overleftrightarrow{B P}$.

Proof See homework.

Theorem If, in a Pasch geometry, $A-B-D$, then $P \in \operatorname{int}(\angle A B C)$ if and only if $C \in \operatorname{int}(\angle D B P)$.

Proof See homework.

Definition If A, B and C are noncollinear points in a Pasch geometry and H is the side of $\overleftrightarrow{A B}$ which contains C, G is the side of $\overleftrightarrow{B C}$ which contains A, and I is the side of $\overleftrightarrow{A C}$ which contains B, then we call

$$
\operatorname{int}(\triangle A B C)=G \cap H \cap I
$$

the interior of $\triangle A B C$.
Theorem In a Pasch geometry, $\operatorname{int}(\triangle A B C)$ is convex.
Proof See homework.

