
Lecture 13: Interiors

13.1 Interiors

Definition If A and B are distinct points in a metric geometry, we call

int(
−→
AB) =

−→
AB − {A}

the interior of the ray
−→
AB and we call

int(AB) = AB − {A,B}
the interior of the segment AB.

Theorem If A and B are distinct points in a metric geometry, then
←→
AB,

−→
AB, AB,

int(
−→
AB), and int(AB) are all convex sets.

Proof Various homework exercises.

Theorem If, in a Pasch geometry, ` is a line and S is a nonempty convex set of points
with S ∩ ` = ∅, then all the points in S lie on the same side of `.

Proof Immediate from the definition of convex set.

Theorem Let S be a line, a ray, a segment, the interior of a ray, or the interior of a
segment in a Pasch geometry. If ` is a line with S ∩ ` = ∅, then all of S lies on one side

of `. If A, B, and C are points with A − B − C and
←→
AB ∩ ` = {B}, then int(

−→
BA) and

int(AB) both lie on the same side of `, while int(
−→
BA) and int(

−→
BC) lie on opposite sides of

`.

Proof Consequence of previous theorem and definition.

Z Theorem If, in a Pasch geometry, P and Q lie on opposite sides of a line
←→
AB, then

−→
BP ∩

−→
AQ = ∅.

Proof By the previous theorem, int(
−→
BP ) and int(

−→
AQ) lie on opposite sides of

←→
AB. Thus

int(
−→
BP ) ∩ int(

−→
AQ) = ∅. Now A, B, and Q are noncollinear, so B /∈

←→
AQ, and thus

−→
BP ∩ int(

−→
AQ) = ∅. Similarly, A /∈

←→
BP , so

−→
BP ∩

−→
AQ = ∅.

Definition Given noncollinear points A, B, and C in a Pasch geometry, let H be the

side of
←→
AB which contains C and let G be the side of

←→
BC which contains A. We call

int(∠ABC) = H ∩G

the interior of ∠ABC.
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Theorem If, in a Pasch geometry, ∠ABC = ∠DEF , then int(∠ABC) = int(∠DEF ).

Proof We know that B = E and either
−→
BA =

−→
ED or

−→
BA =

−→
EF . Suppose

−→
BA =

−→
ED.

Let H be the side of
←→
AB which contains C and let G be the side of

←→
BC which contains A.

Now D ∈
−→
BA, so A and D are on same side of

←→
BC =

←→
EF . Hence D ∈ G. F ∈

−→
BC, so C

and F are on the same side of
←→
AB =

←→
DE. Hence F ∈ H. Thus

int(∠ABC) = H ∩G = int(∠DEF ).

Theorem In a Pasch geometry, P ∈ int(∠ABC) if and only if A and P are on the same

side of
←→
BC and C and P are on the same side of

←→
AB.

Proof See homework.

Theorem In a Pasch geometry, int(AC) ⊂ int(∠ABC).

Proof See homework.

13.2 Crossbar

Crossbar Theorem If, in a Pasch geometry, P ∈ int(∠ABC), then
−→
BP ∩ AC = {F}

where A− F − C.

Proof Let E be a point such that E − B − C. We first show that
←→
BP ∩ AE = ∅. Now

P and C are on the same side of
←→
AB and C and E are on opposite sides of

←→
AB, so P and

E are on opposite sides of
←→
AB. Hence, by the Z Theorem,

−→
BP ∩AE = ∅. Now let Q be a

point such that Q−B − P . Then Q and P are on opposite sides of
←→
BC and P and A are

on the same side of
←→
BC, so Q and A are on opposite sides of

←→
BC =

←→
EC. Hence, by the Z

Theorem,
−→
BQ ∩AE = ∅. Thus

←→
BP ∩AE = ∅.

Applying Pasch’s Postulate to 4ECA, we conclude that
←→
BP ∩ AC 6= ∅. Since A, B,

and C are noncollinear, we must have
←→
BP ∩ AC = {F} for some F . Now F 6= A (since

←→
BP ∩AE = ∅) and F 6= C (since P /∈

←→
BC). Thus A−F −C. Finally, P and A are on the

same side of
←→
BC and A and F are on the same side of

←→
BC, so P and F are on the same

side of
←→
BC. Hence F ∈

−→
BP .

Theorem If, in a Pasch geometry, CP ∩
←→
AB = ∅, then P ∈ int(∠ABC) if and only if A

and C are on opposite sides of
←→
BP .
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Proof See homework.

Theorem If, in a Pasch geometry, A − B − D, then P ∈ int(∠ABC) if and only if
C ∈ int(∠DBP ).

Proof See homework.

Definition If A, B and C are noncollinear points in a Pasch geometry and H is the side

of
←→
AB which contains C, G is the side of

←→
BC which contains A, and I is the side of

←→
AC

which contains B, then we call

int(4ABC) = G ∩H ∩ I

the interior of 4ABC.

Theorem In a Pasch geometry, int(4ABC) is convex.

Proof See homework.


