Lecture 12: Pasch's Postulate

12.1 Pasch's Postulate

Pasch's Theorem Suppose $\{\mathcal{P}, \mathcal{L}, d\}$ is a metric geometry which satisfies the plane separation axiom. If ℓ is a line, $\triangle A B C$ is a triangle, $D \in \ell$, and $A-D-B$, then either $\ell \cap \overline{A C} \neq \emptyset$ or $\ell \cap \overline{B C} \neq \emptyset$.

In other words, in a metric geometry satisfying PSA, a line intersecting a triangle intersects at least two sides of the triangle.

Proof Suppose $A-D-B, D \in \ell \cap \triangle A B C$, and $\ell \cap \overline{A C}=\emptyset$. First note that $A \in \overline{A C}$, so $A \notin \ell$. Thus $\ell \neq \overleftrightarrow{A B}$, and so $B \notin \ell$. Hence A and B are on opposite sides of ℓ. Since A and C are on the same side of ℓ (since $\ell \cap \overline{A C}=\emptyset$), it follows that C and B are on opposite sides of ℓ. Hence $\overline{B C} \cap \ell \neq \emptyset$.

Definition We say a metric geometry satisfies Pasch's Postulate (PP) if whenever ℓ is a line, $\triangle A B C$ is a triangle, $D \in \ell$, and $A-D-B$, then either $\ell \cap \overline{A C} \neq \emptyset$ or $\ell \cap \overline{B C} \neq \emptyset$.

Note that the above theorem says that in a metric geometry, PSA implies PP.
Theorem Suppose $\{\mathcal{P}, \mathcal{L}, d\}$ is a metric geometry satisfying Pasch's Postulate. If A, B, and C are noncollinear points and $\ell \cap\{A, B, C\}=\emptyset$, then ℓ cannot intersect all three sides of $\triangle A B C$.

Proof Suppose $\{D\}=\ell \cap \overline{A B},\{E\}=\ell \cap \overline{A C}$, and $\{F\}=\ell \cap \overline{B C}$. Suppose $D-E-F$. Now $\overleftrightarrow{B D}=\overleftrightarrow{A B}$ and $\overleftrightarrow{B F}=\overleftrightarrow{B C}$, so B, D, and F are not collinear. Now $\overleftrightarrow{A C} \cap \overline{D F}=\{E\}$, so, by Pasch's Postulate, we must have either $\overleftrightarrow{A C} \cap \overline{B D} \neq \emptyset$ or $\overleftrightarrow{A C} \cap \overline{B F} \neq \emptyset$. But

$$
\overleftrightarrow{A C} \cap \overrightarrow{B D} \subset \overleftrightarrow{A C} \cap \overleftrightarrow{B D}=\{A\}
$$

and $A \neq \overline{B D}$ (since $A-D-B$), so $\overleftrightarrow{A C} \cap \overline{B D}=\emptyset$. Also,

$$
\overleftrightarrow{A C} \cap \overrightarrow{B F} \subset \overleftrightarrow{A C} \cap \overleftrightarrow{B F}=\{C\}
$$

and $C \neq \overline{B F}$ (since $B-F-C$), so $\overleftrightarrow{A C} \cap \overline{B F}=\emptyset$. Hence our assumptions imply a contradiction of Pasch's Postulate.

Theorem A metric geometry $\{\mathcal{P}, \mathcal{L}, d\}$ satisfying Pasch's Postulate also satisfies the plane separation axiom.

Proof Given a line ℓ, let P be a point not on ℓ and define

$$
H_{1}=\{Q: Q \in \mathcal{P}, Q=P \text { or } \overline{P Q} \cap \ell=\emptyset\}
$$

and

$$
H_{2}=\{Q: Q \in \mathcal{P}, Q \notin \ell, \overline{P Q} \cap \ell \neq \emptyset\} .
$$

Clearly, H_{1} and H_{2} are disjoint and $\mathcal{P}-\ell=H_{1} \cup H_{2}$.
We first show H_{1} is convex. Let $R, S \in H_{1}$ and suppose $R-T-S$. If P, R, and S are collinear, then

$$
\overline{R S} \subset \overline{P R} \cup \overline{P S} \subset H_{1},
$$

so $T \in H_{1}$. If P, R, and S are noncollinear, then $\ell \cap \overline{P R}=\emptyset$ and $\ell \cap \overline{P S}=\emptyset$, with Pasch's Postulate applied to $\triangle P R S$, imply that $\ell \cap \overline{R S}=\emptyset$. But then $\ell \cap \overline{P R}=\emptyset$ and $\ell \cap \overline{R T}=\emptyset$, with Pasch's Postulate applied to $\triangle P R T$, imply that $\ell \cap \overline{P T}=\emptyset$. Thus $T \in H_{1}$. Hence H_{1} is convex.

We next show that H_{2} is convex. Let $R, S \in H_{2}$ and suppose $R-T-S$. If P, R, and S are collinear, then either

$$
\overline{P R} \subset \overline{P T}
$$

or

$$
\overline{P S} \subset \overline{P T}
$$

Since both $\overline{P R} \cap \ell \neq \emptyset$ and $\overline{P S} \cap \ell \neq \emptyset$, it follows that $\overline{P T} \cap \ell \neq \emptyset$, so, since $T \notin \ell$, $T \in H_{2}$. If P, R, and S are noncollinear, first note that $T \notin \ell$, since that would imply that ℓ intersects all three sides of $\triangle P R S$. Indeed, we must have $\ell \cap \overline{R S}=\emptyset$. In particular, $\ell \cap \overline{R T}=\emptyset$; combined with $\ell \cap \overline{P R} \neq \emptyset$ and Pasch's Postulate applied to $\triangle P R T$, this implies $\ell \cap \overline{P T} \neq \emptyset$. Thus $T \in H_{2}$. Hence H_{2} is convex.

Now suppose $R \in H_{1}$ and $S \in H_{2}$. We need to show that $\overline{R S} \cap \ell \neq \emptyset$. If $R=P$, then

$$
\overline{R S} \cap \ell=\overline{P S} \cap \ell \neq \emptyset,
$$

and we are done. So assume $R \neq P$. If R, S and P are collinear, then either $P-R-S$, $R-P-S$, or $P-S-R$. In the first case, $\overline{P S} \cap \ell \neq \emptyset$ and $\overline{P R} \cap \ell=\emptyset$ imply $\overline{R S} \cap \ell \neq \emptyset$; in the second case, $\overline{P S} \cap \ell \neq \emptyset$ and $\overline{P S} \subset \overline{R S}$ imply $\overline{R S} \cap \ell \neq \emptyset$; and the third case cannot occur because $\overline{P S} \subset \overline{P R}$ would imply $\overline{P R} \cap \ell \neq \emptyset$. If R, S, and P are noncollinear, then $\overline{P S} \cap \ell \neq \emptyset$ and $\overline{P R} \cap \ell=\emptyset$ imply, with Pasch's Postulate applied to $\triangle P R S$, that $\overline{R S} \cap \ell \neq \emptyset$.

12.2 Pasch geometries

Definition We call a metric geometry satisfying Pasch's Postulate (or, equivalently, satisfying the plane separation axiom) a Pasch Geometry.

Example The Euclidean Plane, the Poincaré Plane, and the Taxicab Plane are all Pasch Geometries.

Example Define a metric geometry $\{\mathcal{P}, \mathcal{L}, d\}$ as follows: We let

$$
\mathcal{P}=\left\{(x, y):(x, y) \in \mathbb{R}^{2}, x<0 \text { or } x \geq 1\right\},
$$

and

$$
\mathcal{L}=\left\{\ell \cap \mathcal{P}: \ell \in \mathcal{L}_{E}, \ell \cap \mathcal{P} \neq \emptyset\right\}
$$

To define d, we first define rulers. If $\ell=L_{a}, a \in \mathbb{R}$ with $a<0$ or $a \geq 1$, define

$$
f(x, y)=y
$$

for all $(x, y) \in \ell$. If $\ell=L_{m, b}, m \in \mathbb{R}, b \in \mathbb{R}$, define

$$
f(x, y)= \begin{cases}x \sqrt{1+m^{2}}, & \text { if } x<0 \\ (x-1) \sqrt{1+m^{2}}, & \text { if } x \geq 1\end{cases}
$$

Given any two distinct points P and Q in \mathcal{P}, let f be the ruler as described above for $\overleftrightarrow{P Q}$ and let

$$
d(P, Q)=|f(P)-f(Q)|
$$

With these definitions, $\{\mathcal{P}, \mathcal{L}, d\}$ is a metric geometry.
Now consider $\triangle A B C$ where $A=(-1,0), B=(2,0)$, and $C=(2,3)$. If ℓ is the line with equation $y=1.5$ (that is, $\ell=L_{0,1.5}$), then $\ell \cap \overline{B C}=\{(2,1.5)\}$. However, $\ell \cap \overline{A C}=\emptyset$ and $\ell \cap \overline{A B}=\emptyset$. Thus $\{\mathcal{P}, \mathcal{L}, d\}$ is not a Pasch Geometry. We call $\{\mathcal{P}, \mathcal{L}, d\}$ the Missing Strip Plane.

