
Lecture 11: PSA for the Euclidean and Hyperbolic Planes

11.1 PSA for the Euclidean Plane

Notation: If P = (x, y) ∈ R2, we let P⊥ = (−y, x). Note then that, for any P ∈ R2,

〈P, P⊥〉 = 0.

Moreover, suppose P = (x, y) 6= (0, 0), Q = (u, v), and

〈Q,P⊥〉 = 0.

Then
−uy + vx = 0.

If x 6= 0, then
v =

uy

x
,

and so
Q = (u, v) = u

(
1,

y

x

)
=

u

x
(x, y) = tP

where t =
u

x
. Similarly, if y 6= 0,

u =
vx

y
,

and

Q = (u, v) = v

(
x

y
, 1

)
=

v

y
(x, y) = tP

where t =
v

y
. In either case, we have 〈Q,P⊥〉 = 0 implies Q is a scalar multiple of P .

Theorem If P and Q are distinct points in the Euclidean Plane, then

←→
PQ = {R : R ∈ R2, 〈R− P, (Q− P )⊥〉 = 0}.

Proof Let A ∈
←→
PQ. Then

A = P + t(Q− P )

for some t ∈ R. Hence

〈A− P, (Q− P )⊥〉 = 〈t(Q− P ), (Q− P )⊥〉 = t〈(Q− P ), (Q− P )⊥〉 = 0,

so
A ∈ {R : R ∈ R2, 〈R− P, (Q− P )⊥〉 = 0}.

11-1



Lecture 11: PSA for the Euclidean and Hyperbolic Planes 11-2

Now suppose
A ∈ {R : R ∈ R2, 〈R− P, (Q− P )⊥〉 = 0}.

Then
A− P = t(Q− P )

for some t ∈ R, that is, A = P + t(Q− P ). Hence A ∈
←→
PQ. Thus

←→
PQ = {R : R ∈ R2, 〈R− P, (Q− P )⊥〉 = 0}.

Definition If P and Q are distinct points in the Euclidean Plane and ` =
←→
PQ, then we

call
H+ = {A : A ∈ R2, 〈A− P, (Q− P )⊥〉 > 0}

and
H− = {A : A ∈ R2, 〈A− P, (Q− P )⊥〉 < 0}

the Euclidean half planes determined by `.

Theorem Given ` =
←→
PQ in the Euclidean Plane, the half planes H+ and H− are convex.

Proof Let A,B ∈ H+. Let C ∈ AB. Then

C = A + t(B −A) = (1− t)A + tB

for some 0 < t < 1. Hence

〈C − P, (Q− P )⊥〉 = 〈((1− t)A + tB)− ((1− t)P + tP ), (Q− P )⊥〉
= (1− t)〈(A− P ), (Q− P )⊥〉+ t〈(B − P ), (Q− P )⊥〉
> 0,

so C ∈ H+ and H+ is convex. The proof for H− is similar.

Theorem The Euclidean Plane {R2,LE , dE} satisfies the plane separation axiom.

Proof Given ` ∈ LE , let H+ and H− be the Euclidean half planes determined by `.
Since for every A ∈ R2, exactly one of

〈A− P, (Q− P )⊥〉 < 0,

〈A− P, (Q− P )⊥〉 = 0,

or
〈A− P, (Q− P )⊥〉 > 0,
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holds, it follows that H+, H−, and ` are disjoint and

R2 − ` = H+ ∪H−.

Moreover, we have already seen that H+ and H− are convex. It remains to show that
given A ∈ H+ and B ∈ H−,

AB ∩ ` 6= ∅.

Define g : [0, 1] → R by

g(t) = 〈(A + t(B −A))− P, (Q− P )⊥〉.

Then
g(0) = 〈A− P, (Q− P )⊥〉 > 0

and
g(1) = 〈B − P, (Q− P )⊥〉 < 0.

Since g is continuous (in fact, a first degree polynomial), it follows from the Intermediate
Value Theorem that there exists s ∈ (0, 1) such that g(s) = 0. If C = A + s(B −A), then
C ∈ AB and C ∈ `. Hence AB ∩ ` 6= ∅.

Theorem The Taxicab Plane {R2,LE , dT } satisfies the Plane Separation Axiom.

Proof Follows from the fact that the Taxicab Plane and the Euclidean Plane have the
same lines and the same betweenness relation.

11.2 PSA for the Poincaré Plane

Definition Given a line ` = aL in the Poincaré Plane, we call

H+ = {(x, y) : (x, y) ∈ H, x > a}

and
H− = {(x, y) : (x, y) ∈ H, x < a}

the Poincaré half planes determined by `. Given a line ` = cLr in the Poincaré Plane, we
call

H+ = {(x, y) : (x, y) ∈ H, (x− c)2 + y2 > r2}

and
H− = {(x, y) : (x, y) ∈ H, (x− c)2 + y2 < r2}

the Poincaré half planes determined by `.

Theorem Given a line ` in the Poincaré Plane, H+ and H− are convex sets.
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Proof Suppose ` = aL and A = (x1, y1) ∈ H+, B = (x2, y2) ∈ H+ are distinct points.
If P = (x, y) ∈ AB, then either x1 ≤ x ≤ x2 or x2 ≤ x ≤ x1. Thus, since x1 > a and
x2 > a, x > a, so P ∈ H+ and H+ is convex. Similarly, H− is convex.

Now suppose ` = cLr and A = (x1, y1) ∈ H+, B = (x2, y2) ∈ H+ are distinct points. Now

if
←→
AB = aL for some a ∈ R, then f : R →

←→
AB defined by

f(t) = (a, et)

parametrizes
←→
AB. In particular, there exist tA, tB ∈ R such that f(tA) = A and f(tB) = B.

In this case define g : R → R by

g(t) = (a− c)2 + e2t − r2.

Note that g(t) < 0 if and only if f(t) ∈ H−, g(t) = 0 if and only if f(t) ∈ `, and g(t) > 0
if and only if f(t) ∈ H+. Moreover,

g′(t) = 2e2t > 0

for all t, so g is an increasing function. Now if C ∈ AB, A− C − B, so there exists a tC ,
between tA and tB , for which f(tC) = C. Since g(tA) > 0, g(tB) > 0, and g is increasing,
it follows that g(tC) > 0.

Finally, suppose
←→
AB = dLs. We may parametrize

←→
AB with f : R →

←→
AB defined by

f(t) = (d + s tanh(t), ssech(t)).

Let tA, tB ∈ R such that f(tA) = A and f(tB) = B. Now define g : R → R by

g(t) = (d + s tanh(t)− c)2 + s2sech2(t)− r2.

As above, g(t) < 0 if and only if f(t) ∈ H−, g(t) = 0 if and only if f(t) ∈ `, and g(t) > 0
if and only if f(t) ∈ H+. Now

g′(t) = 2(d + s tanh(t)− c)ssech2(t)− 2s2sech(t)sech(t) tanh(t)

= (2d + 2s tanh(t)− 2c− 2s tanh(t))ssech2(t)

= 2(d− c)ssech2(t).

Thus g is increasing if d− c > 0, constant if d = c, and decreasing if d− c < 0. It follows
that if C ∈ AB and f(tC) = C, then, since tC is between tA and tB , g(tC) > 0 and
C ∈ H+. Thus H+ is convex. A similar argument shows that H− is convex.

Theorem The Poincaré Plane {H,LH , dH} satisfies the plane separation axiom.

Proof Use the functions f and g defined in the previous proof, combined with the
Intermediate Value Theorem.


