Lecture 10: Plane Separation

10.1 Convex sets

Definition We say a set of points S in a metric geometry is convex if for every two distinct points $P, Q \in S, \overline{P Q} \subset S$.

Example The set

$$
S=\left\{(x, y):(x, y) \in \mathbb{R}^{2}, x^{2}+y^{2} \leq 1\right\}
$$

is convex set in the Euclidean Plane. For if $P, Q \in S$, then $\|P\| \leq 1$ and $\|Q\| \leq 1$. If $R \in \overline{P Q}$, then

$$
R=A+t(B-A)
$$

for some $0<t<1$. Hence

$$
\|R\|=\|A+t(B-A)\| \leq(1-t)\|A\|+t\|B\| \leq \max \{\|A\|,\|B\|\} \leq 1
$$

and so $R \in S$.
Example The set

$$
S=\left\{(x, y):(x, y) \in \mathbb{R}^{2}, x^{2}+y^{2}=1\right\}
$$

is not convex in the Euclidean Plane. For example, if we let $P=(1,0)$ and $Q=(-1,0)$, then $(0,0) \in \overline{P Q}$, but $P \notin S$.

10.2 The plane separation axiom

Definition We say a metric geometry $\{\mathcal{P}, \mathcal{L}, d\}$ satisfies the plane separation axiom (PSA) if for every $\ell \in \mathcal{L}$, there exist $H_{1} \subset \mathcal{P}$ and $H_{2} \subset \mathcal{P}$ such that (1) $H_{1} \cup H_{2}=\mathcal{P}-\ell$, (2) $H_{1} \cap H_{2}=\emptyset$, (3) H_{1} and H_{2} are convex, and (4) if $P \in H_{1}$ and $Q \in H_{2}$, then $\overline{P Q} \cap \ell \neq \emptyset$. We call H_{1} and H_{2} the half planes determined by ℓ.

Theorem Let ℓ be a line in a metric geometry. If H_{1}, H_{2} and $H_{1}^{\prime}, H_{2}^{\prime}$ satisfy the conditions of the plane separation axiom for the line ℓ, then either $H_{1}=H_{1}^{\prime}$ and $H_{2}=H_{2}^{\prime}$, or $H_{1}=H_{2}^{\prime}$ and $H_{2}=H_{1}^{\prime}$.

Proof At least one of H_{1} and H_{2} is nonempty. Suppose $P \in H_{1}$. Since $P \notin \ell$, either $P \in H_{1}^{\prime}$ or $P \in H_{2}^{\prime}$. Suppose $P \in H_{1}^{\prime}$. We will show that $H_{1}=H_{1}^{\prime}$. Let $Q \in H_{1}, Q \neq P$. Then $Q \notin \ell$ and if $Q \in H_{2}^{\prime}$, then $\overline{P Q} \cap \ell \neq \emptyset$, contradicting the convexity of H_{1}. Thus $Q \in H_{1}^{\prime}$ and $H_{1} \subset H_{1}^{\prime}$. The argument now works in the other direction: if $Q \in H_{1}^{\prime}$, then $Q \notin \ell$ and $Q \notin H_{2}$. Hence $H_{1}^{\prime} \subset H_{1}$, and so $H_{1}=H_{1}^{\prime}$.

It now follows that

$$
H_{2}=\mathcal{P}-\ell-H_{1}=\mathcal{P}-\ell-H_{1}^{\prime}=H_{2}^{\prime}
$$

Definition Let ℓ be a line in metric geometry which satisfies PSA and let H_{1} and H_{2} be the half planes determined by ℓ. We say points P and Q lie on the same side of ℓ if either $P, Q \in H_{1}$ or $P, Q \in H_{2}$. We say P and Q lie on opposite sides of ℓ if either $P \in H_{1}$ and $Q \in H_{2}$ or $P \in H_{2}$ and $Q \in H_{1}$. If $P \in H_{1}$, we say H_{1} is the side of ℓ which contains P.

Theorem Given a line ℓ and two points P and Q not on ℓ in a metric geometry which satisfies PSA, then P and Q are on opposite sides of ℓ if and only if $\overline{P Q} \cap \ell \neq \emptyset$, and P and Q are on the same side of ℓ if and only if either $P=Q$ or $\overline{P Q} \cap \ell=\emptyset$.

Proof Follows directly from the definitions.

Theorem Let ℓ be a line in a metric geometry which satisfies PSA. If P and Q are on opposite sides of ℓ and Q and R are on opposite sides of ℓ, then P and R are on the same side of ℓ.

Proof Homework.

Theorem Let ℓ be a line in a metric geometry which satisfies PSA. If P and Q are on opposite sides of ℓ and Q and R are on the same side of ℓ, then P and R are on opposite sides of ℓ.

Proof Homework.

Theorem If ℓ and ℓ^{\prime} are lines in a metric geometry satisfying PSA and H is a half plane of both ℓ and ℓ^{\prime}, then $\ell=\ell^{\prime}$.

Proof Suppose $\ell \neq \ell^{\prime}$. Let $P \in \ell-\ell^{\prime}$ and $Q \in \ell^{\prime}-\ell$ (there exist such P and Q since $\ell \cap \ell^{\prime}$ can contain at most one point). Let $A, B \in \overleftrightarrow{P Q}$ such that $A-P-Q$ and $P-Q-B$. Then $A-P-Q-B$. In particular, $A-P-B$, so A and B are on opposite sides of ℓ. Hence either $A \in H$ or $B \in H$. Suppose $A \in H$. Now $A-P-Q$ implies A and P are on the same side of ℓ^{\prime}. Hence $P \in H$, contradicting $P \in \ell$. Hence we must have $\ell=\ell^{\prime}$.

Definition If H is a half plane determined by a line ℓ, then we call ℓ the edge of H.

