Lecture 9: Motion Along a Curve

9.1 Components of velocity and acceleration

Suppose $f(t)$ is the position of a particle moving along a curve C in \mathbb{R}^{n}, where $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$, and let $\mathbf{v}(t)=f^{\prime}(t)$ and $\mathbf{a}(t)=f^{\prime \prime}(t)$ be the velocity and acceleration of the particle at time t. Now we may write

$$
\mathbf{v}(t)=|\mathbf{v}(t)| T(t)
$$

where $T(t)$ is the unit tangent vector at $f(t)$, so

$$
\begin{aligned}
\mathbf{a}(t) & =|\mathbf{v}(t)| T^{\prime}(t)+\frac{d}{d t}|\mathbf{v}(t)| T(t) \\
& =|\mathbf{v}(t)|\left|T^{\prime}(t)\right| N(t)+\frac{d}{d t}|\mathbf{v}(t)| T(t) \\
& =|\mathbf{v}(t)|^{2} \kappa(t) N(t)+\frac{d}{d t}|\mathbf{v}(t)| T(t)
\end{aligned}
$$

where $N(t)$ is the principal unit normal vector at $f(t)$ and $\kappa(t)$ is the curvature of C at $f(t)$. In other words, we may write

$$
\mathbf{a}(t)=a_{T} T(t)+a_{N} N(t)
$$

where

$$
a_{T}=\frac{d}{d t}|\mathbf{v}(t)|
$$

and

$$
a_{N}=|\mathbf{v}(t)|^{2} \kappa(t) .
$$

In particular, this says that the acceleration of the particle always lies in the plane of the unit tangent and principal unit normal vectors. Moreover,

$$
\mathbf{a}(t) \cdot T(t)=a_{T}(T(t) \cdot T(t))+a_{N}(N(t) \cdot T(t))=a_{T}
$$

and

$$
\mathbf{a}(t) \cdot N(t)=a_{T}(T(t) \cdot N(t))+a_{N}(N(t) \cdot N(t))=a_{N}
$$

so a_{T} and a_{N} are just the components of the acceleration vector in the direction of $T(t)$ and $N(t)$, respectively.

Example Suppose a particle moves along a helix H with position at time t given by $f(t)=(\cos (2 \pi t), \sin (2 \pi t), t)$. Then the velocity and acceleration of the particle are

$$
\mathbf{v}(t)=(-2 \pi \sin (2 \pi t), 2 \pi \cos (2 \pi t), 1)
$$

and

$$
\mathbf{a}(t)=\left(-4 \pi^{2} \cos (2 \pi t),-4 \pi^{2} \sin (2 \pi t), 0\right)
$$

respectively. The speed of the particle is

$$
|\mathbf{v}(t)|=\sqrt{4 \pi^{2}+1}
$$

the unit tangent vector is

$$
\begin{aligned}
T(t) & =\frac{1}{\sqrt{4 \pi^{2}+1}}(-2 \pi \sin (2 \pi t), 2 \pi \cos (2 \pi t), 1) \\
T^{\prime}(t) & =\frac{1}{\sqrt{4 \pi^{2}+1}}\left(-4 \pi^{2} \cos (2 \pi t),-4 \pi^{2} \sin (2 \pi t), 0\right)
\end{aligned}
$$

and the principal unit normal vector is

$$
N(t)=(-\cos (2 \pi t),-\sin (2 \pi t), 0) .
$$

Hence the component of acceleration in the direction of $T(t)$ is

$$
a_{T}=\mathbf{a}(t) \cdot T(t)=\frac{1}{\sqrt{4 \pi^{2}+1}}\left(8 \pi^{3} \cos (2 \pi t) \sin (2 \pi t)-\left(8 \pi^{3} \cos (2 \pi t) \sin (2 \pi t)\right)=0\right.
$$

and the component of acceleration in the direction of $N(t)$ is

$$
a_{N}=\mathbf{a}(T) \cdot N(t)=4 \pi^{2} \cos ^{2}(2 \pi t)+4 \pi^{2} \sin ^{2}(2 \pi t)=4 \pi^{2} .
$$

Example Suppose a particle moves along an ellipse E with position at time t given by $f(t)=(4 \cos (t), 2 \sin (t))$. Then the velocity and acceleration of the particle are

$$
\mathbf{v}(t)=(-4 \sin (t), 2 \cos (t))
$$

and

$$
\mathbf{a}(t)=(-4 \cos (t),-2 \sin (t)),
$$

respectively. The speed of the particle is

$$
|\mathbf{v}(t)|=\sqrt{16 \sin ^{2}(t)+4 \cos ^{2}(t)}=\sqrt{12 \sin ^{2}(t)+4}
$$

and the curvature of E is

$$
\kappa(t)=\frac{8}{\left(12 \sin ^{2}(t)+4\right)^{\frac{3}{2}}}
$$

Hence the component of acceleration in the direction of the the unit tangent vector $T(t)$ is

$$
a_{T}=\frac{d}{d t}|\mathbf{v}(t)|=\frac{12 \sin (t) \cos (t)}{\sqrt{\left.12 \sin ^{2}(t)+4\right)}}
$$

and the component of acceleration in the direction of the principal unit normal vector $N(t)$ is

$$
a_{N}=|\mathbf{v}(t)|^{2} \kappa(t)=\left(12 \sin ^{2}(t)+4\right) \frac{8}{\left(12 \sin ^{2}(t)+4\right)^{\frac{3}{2}}}=\frac{8}{\sqrt{12 \sin ^{2}(t)+4}}
$$

Note that when $t=0$ or $t=\pi, a_{T}=0$ and $a_{N}=4$, and when $t=\frac{\pi}{2}$ or $t=\frac{3 \pi}{2}, a_{T}=0$ and $a_{N}=2$.

