Lecture 7: Derivatives of Functions from \mathbb{R} to \mathbb{R}^{n}

7.1 Derivatives

Recall that the derivative of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ at a point t is

$$
f^{\prime}(t)=\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}
$$

provided the limit exists.
Definition The derivative of a function $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ at a point t is

$$
f^{\prime}(t)=\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}
$$

provided the limit exists.
If $n=1, f^{\prime}(t)$ is the slope of the line tangent to the graph of f at $(t, f(t))$. For $n>1$, $f^{\prime}(t)$ is the vector tangent to the curve parametrized by f at $f(t)$.

Suppose $f(t)=\left(f_{1}(t), f_{2}(t), \ldots, f_{n}(t)\right)$. Then

$$
\begin{aligned}
f^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{f_{1}(t+h)-f_{1}(t)}{h}, \frac{f_{2}(t+h)-f_{2}(t)}{h}, \ldots, \frac{f_{n}(t+h)-f_{n}(t)}{h}\right) \\
& =\left(\lim _{h \rightarrow 0} \frac{f_{1}(t+h)-f_{1}(t)}{h}, \lim _{h \rightarrow 0} \frac{f_{2}(t+h)-f_{2}(t)}{h}, \ldots, \lim _{h \rightarrow 0} \frac{f_{n}(t+h)-f_{n}(t)}{h}\right) \\
& =\left(f_{1}^{\prime}(t), f_{2}^{\prime}(t), \ldots, f_{n}^{\prime}(t)\right) .
\end{aligned}
$$

Proposition If $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is differentiable at t and $f(t)=\left(f_{1}(t), f_{2}(t), \ldots, f_{n}(t)\right)$, then

$$
f^{\prime}(t)=\left(f_{1}^{\prime}(t), f_{2}^{\prime}(t), \ldots, f_{n}^{\prime}(t)\right)
$$

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ parametrizes a curve C. If f is differentiable at a and $f^{\prime}(a) \neq \mathbf{0}$, then an equation for the line tangent to C at a is

$$
\mathbf{x}=f(a)+f^{\prime}(a)(t-a)
$$

Example Let $f(t)=(4 \cos (t), 2 \sin (t))$. Then

$$
f^{\prime}(t)=(-4 \sin (t), 2 \cos (t))
$$

Ellipse with tangent line
For example,

$$
f^{\prime}\left(\frac{\pi}{3}\right)=(-2 \sqrt{3}, 1)
$$

Note that f parametrizes the ellipse E with equation

$$
\frac{x^{2}}{16}+\frac{y^{2}}{4}=1
$$

The equation of the line L which is tangent to E at $f\left(\frac{\pi}{3}\right)=(2, \sqrt{3})$ is

$$
\mathbf{x}=(2, \sqrt{3})+(-2 \sqrt{3}, 1)\left(t-\frac{\pi}{3}\right)
$$

Equivalently, the parametric equations of L are

$$
\begin{aligned}
& x=2-2 \sqrt{3}\left(t-\frac{\pi}{3}\right) \\
& y=\sqrt{3}+\left(t-\frac{\pi}{3}\right)
\end{aligned}
$$

Example If $f(t)=(\cos (2 \pi t), \sin (2 \pi t), t)$, then

$$
f^{\prime}(t)=(-2 \pi \sin (2 \pi t), 2 \pi \cos (2 \pi t), 1)
$$

Hence the equation of the line tangent to the helix C parametrized by f at $f(0)=(1,0,0)$ has vector equation

$$
\mathbf{x}=(1,0,0)+(0,2 \pi, 1) t
$$

and parametric equations

$$
\begin{aligned}
x & =1 \\
y & =2 \pi t \\
z & =t
\end{aligned}
$$

Helix with tangent line
Example Let $f(t)=\left(t^{2}, t^{4}\right)$. Then

$$
f^{\prime}(t)=\left(2 t, 4 t^{3}\right)
$$

and so

$$
f^{\prime}(0)=(0,0)
$$

Definition Suppose $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ parametrizes a curve C for t in some open interval (a, b). If f^{\prime} is continuous and $f^{\prime}(t) \neq \mathbf{0}$ for all t in (a, b), then we call f a smooth parametrization of C.

Example $f(t)=\left(t, t^{2}\right)$ is a smooth parametrization of the parabola $y=x^{2}$, while $g(t)=\left(t^{3}, t^{6}\right)$ is not a smooth parametrization of the same parabola. However, we would say the g is a piecewise smooth parametrization of $y=x^{2}$.

Definition If $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ parametrizes a curve C and $f^{\prime}(a) \neq 0$, we call

$$
T(a)=\frac{f^{\prime}(a)}{\left|f^{\prime}(a)\right|}
$$

the unit tangent vector to C at $f(a)$.

Example If $f(t)=(4 \cos (t), 2 \sin (t))$, then we saw above that

$$
f^{\prime}\left(\frac{\pi}{3}\right)=(-2 \sqrt{3}, 1)
$$

Thus

$$
\left|f^{\prime}\left(\frac{\pi}{3}\right)\right|=\sqrt{12+1}=\sqrt{13}
$$

so the unit tangent vector at $(2, \sqrt{3})$ is

$$
T\left(\frac{\pi}{3}\right)=\frac{1}{\sqrt{13}}(-2 \sqrt{3}, 1)
$$

We will also use the Leibniz notation to denote derivatives. That is, we let

$$
\frac{d}{d t} f(t)=f^{\prime}(t)
$$

Note that our author will sometimes also denote $f^{\prime}(t)$ by $D_{t} f(t)$.
Proposition Suppose $f: \mathbb{R} \rightarrow \mathbb{R}^{n}, g: \mathbb{R} \rightarrow \mathbb{R}^{n}, \varphi: \mathbb{R} \rightarrow \mathbb{R}$ are all differentiable and c is a scalar. Then

$$
\begin{gathered}
\frac{d}{d t}(f(t)+g(t))=\frac{d}{d t} f(t)+\frac{d}{d t} g(t) \\
\frac{d}{d t} c f(t)=c \frac{d}{d t} f(t) \\
\frac{d}{d t}(\varphi(t) f(t))=\varphi(t) f^{\prime}(t)+\varphi^{\prime}(t) f(t) \\
\frac{d}{d t}\left(f(\varphi(t))=f^{\prime}(\varphi(t)) \varphi^{\prime}(t)\right. \\
\frac{d}{d t}(f(t) \cdot g(t))=f(t) \cdot g^{\prime}(t)+f^{\prime}(t) \cdot g(t) \\
\frac{d}{d t}(f(t) \times g(t))=f(t) \times g^{\prime}(t)+f^{\prime}(t) \times g(t)
\end{gathered}
$$

Proof We will prove the product rule for dot products. If $f(t)=\left(f_{1}(t), f_{2}(t), \ldots, f_{n}(t)\right)$ and $g(t)=\left(g_{1}(t), g_{2}(t), \ldots, g_{n}(t)\right)$, then

$$
\begin{aligned}
\frac{d}{d t}(f(t) \cdot g(t))= & \frac{d}{d t}\left(f_{1}(t) g_{1}(t)+f_{2}(t) g_{2}(t)+\cdots+f_{n}(t) g_{n}(t)\right) \\
= & \left(f_{1}(t) g_{1}^{\prime}(t)+f_{1}^{\prime}(t) g_{1}(t), f_{2}(t) g_{2}^{\prime}(t)+f_{2}^{\prime}(t) g_{2}(t), \ldots,\right. \\
& \left.f_{n}(t) g_{n}^{\prime}(t)+f_{n}^{\prime}(t) g_{n}(t)\right) \\
= & \left(f_{1}(t) g_{1}^{\prime}(t)+f_{2}(t) g_{2}^{\prime}(t), \ldots, f_{n}(t) g_{n}^{\prime}(t)\right) \\
& \quad+\left(f_{1}^{\prime}(t) g_{1}(t), f_{2}^{\prime}(t) g_{2}(t), \ldots, f_{n}^{\prime}(t) g_{n}(t)\right) \\
= & f(t) \cdot g^{\prime}(t)+f^{\prime}(t) \cdot g(t)
\end{aligned}
$$

7.2 Integrals

Definition If $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ with $f(t)=\left(f_{1}(t), f_{2}(t), \ldots, f_{n}(t)\right)$ and each of $f_{1}, f_{2}, \ldots, f_{n}$ is integrable on $[a, b]$, then the definite integral of f on the interval $[a, b]$ is

$$
\int_{a}^{b} f(t) d t=\left(\int_{a}^{b} f_{1}(t) d t, \int_{a}^{b} f_{2}(t), \ldots, \int_{a}^{b} f_{n}(t) d t\right)
$$

Similarly, we define the indefinite integral of f by

$$
\int f(t) d t=\left(\int f_{1}(t) d t, \int f_{2}(t) d t, \ldots, \int f_{n}(t) d t\right)
$$

Example If $f(t)=\left(t^{2}, \sin (2 \pi t)\right)$, then

$$
\int_{0}^{1} f(t) d t=\left(\int_{0}^{1} t^{2} d t, \int_{0}^{1} \sin (2 \pi t) d t\right)=\left(\frac{1}{3}, 0\right)
$$

Example If $f(t)=\left(t, t^{2}, t^{3}\right)$, then

$$
\int f(t) d t=\left(\frac{1}{2} t^{2}, \frac{1}{3} t^{3}, \frac{1}{4} t^{4}\right)+\mathbf{c}
$$

Note that \mathbf{c}, the constant of integration, is a vector.

