Lecture 6: Functions from \mathbb{R} to \mathbb{R}^{n}

6.1 Some terminology

Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the set of all points \mathbf{x} in \mathbb{R}^{n} satisfying $\mathbf{x}=f(t)$ for some t in the domain of f is called a curve. Note that $f(t)$ is a vector in \mathbb{R}^{n}, so we may define functions $f_{k}: \mathbb{R} \rightarrow \mathbb{R}, k=1,2, \ldots, n$, such that

$$
f_{k}(t)=k \text { th coordinate of } f(t)
$$

That is,

$$
f(t)=\left(f_{1}(t), f_{2}(t), \ldots, f_{n}(t)\right)
$$

The functions $f_{1}, f_{2}, \ldots, f_{n}$ are the component functions of f. If C is the curve determined by f, we call $\mathbf{x}=f(t)$ the vector equation of C and, writing $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$,

$$
\begin{gathered}
x_{1}=f_{1}(t), \\
x_{2}=f_{2}(t), \\
\vdots \\
x_{n}=f_{n}(t),
\end{gathered}
$$

the parametric equations of C.
Example The function

$$
f(t)=(\cos (t), \sin (t))
$$

parametrizes the unit circle C with center at $(0,0)$ in \mathbb{R}^{2}. We may write the parametric equations as

$$
\begin{aligned}
x & =\cos (t) \\
y & =\sin (t)
\end{aligned}
$$

Note that $f(t)$ traverses C in the counterclockwise direction once over every interval of length 2π.

Example Note that the function

$$
g(t)=(\cos (2 \pi t), \sin (2 \pi t))
$$

also parametrizes the unit circle with center at $(0,0)$ in \mathbb{R}^{2}. However, $g(t)$ traverses the circle in the counterclockwise direction once over every interval of length 1.

Example Note that the function

$$
h(t)=(\sin (2 \pi t), \cos (2 \pi t))
$$

Unit circle parametrized by $f(t)=(\cos (t), \sin (t))$
also parametrizes the unit circle with center at $(0,0)$ in \mathbb{R}^{2}. However, $h(t)$ traverses the circle in the clockwise direction once over every interval of length 1.

Example The function

$$
f(t)=(\cos (2 \pi t), \sin (2 \pi t), t)
$$

parametrizes a helix which wraps around the cylinder $x^{2}+y^{2}=1$ in \mathbb{R}^{3}.
Example The function

$$
f(t)=\left(t, t^{2}\right)
$$

parametrizes the parabola $y=x^{2}$.
Example The function

$$
g(t)=\left(t^{2}, t^{4}\right)
$$

parametrizes the parabola $Y=x^{2}$ with $x \geq 0$. Note that $g(t)$ approaches $(0,0)$ from the right as t goes from $-\infty$ to ∞, and then moves away from $(0,0)$ as t goes from 0 to ∞.

6.2 Limits and continuity

Definition Given a function $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$, we say that the limit of $f(t)$ as t approaches a is \mathbf{L}, denoted

$$
\lim _{t \rightarrow c} f(t)=L
$$

Helix parametrized by $f(t)=(\cos (2 \pi t), \sin (2 \pi t), t)$
if for every $\epsilon>0$ there exists $\delta>0$ such that

$$
|f(t)-\mathbf{L}|<\epsilon
$$

whenever

$$
0<|t-a|<\delta
$$

Note that if $f(t)=\left(f_{1}(t), f_{2}(t), \ldots, f_{n}(t)\right)$ and $\mathbf{L}=\left(L_{1}, L_{2}, \ldots, L_{n}\right)$, then

$$
|f(t)-L|=\sqrt{\left(f_{1}(t)-L_{1}\right)^{2}+\left(f_{2}(t)-L_{2}\right)^{2}+\cdots+\left(f_{n}(t)-L_{n}\right)^{2}}
$$

Hence $|f(t)-\mathbf{L}|$ is "small" if and only if $\left|f_{k}(t)-L_{k}\right|$ is "small" for $k=1,2, \ldots, n$. Consequently,

$$
\lim _{t \rightarrow a} f(t)=\mathbf{L}
$$

if and only if

$$
\lim _{t \rightarrow a} f_{k}(t)=L_{k}
$$

for $k=1,2, \ldots, n$. That is,

$$
\lim _{t \rightarrow a} f(t)=\left(\lim _{t \rightarrow a} f_{1}(t), \lim _{t \rightarrow a} f_{2}(t), \ldots, \lim _{t \rightarrow a} f_{n}(t)\right)
$$

Example $\quad \lim _{t \rightarrow \pi}\left(\cos (t), \sin (t), t^{2}\right)=\left(-1,0, \pi^{2}\right)$.
Note that limits from the left and right may be defined analogous to the definitions for functions from \mathbb{R} to \mathbb{R}.

Definition A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be continuous at a point a in \mathbb{R} if $\lim _{t \rightarrow a} f(t)=f(a)$.

Proposition If $f(t)=\left(f_{1}(t), f_{2}(t), \ldots, f_{n}(t)\right)$, then f is continuous at a if and only if $f_{1}, f_{2}, \ldots, f_{n}$ are each continuous at a.

Note that continuous from the right and continuous from the left may be defined analogous to the definitions for functions from \mathbb{R} to \mathbb{R}.

Example $f(t)=(\cos (t), \sin (3 \pi t), \sqrt{t})$ is continuous on $[0, \infty)$. Recall that this means f is continuous for all points t in $(0, \infty)$ and f is continuous from the right at 0 .

