Lecture 6: Functions from \mathbb{R} to \mathbb{R}^n

6.1 Some terminology

Given a function $f: \mathbb{R}^n \to \mathbb{R}$, the set of all points \mathbf{x} in \mathbb{R}^n satisfying $\mathbf{x} = f(t)$ for some t in the domain of f is called a *curve*. Note that f(t) is a vector in \mathbb{R}^n , so we may define functions $f_k: \mathbb{R} \to \mathbb{R}$, $k = 1, 2, \ldots, n$, such that

$$f_k(t) = k$$
th coordinate of $f(t)$.

That is,

$$f(t) = (f_1(t), f_2(t), \dots, f_n(t)).$$

The functions f_1, f_2, \ldots, f_n are the *component* functions of f. If C is the curve determined by f, we call $\mathbf{x} = f(t)$ the vector equation of C and, writing $\mathbf{x} = (x_1, x_2, \ldots, x_n)$,

$$x_1 = f_1(t),$$

$$x_2 = f_2(t),$$

$$\vdots$$

$$x_n = f_n(t),$$

the parametric equations of C.

Example The function

$$f(t) = (\cos(t), \sin(t))$$

parametrizes the unit circle C with center at (0,0) in \mathbb{R}^2 . We may write the parametric equations as

$$x = \cos(t),$$

$$y = \sin(t).$$

Note that f(t) traverses C in the counterclockwise direction once over every interval of length 2π .

Example Note that the function

$$g(t) = (\cos(2\pi t), \sin(2\pi t))$$

also parametrizes the unit circle with center at (0,0) in \mathbb{R}^2 . However, g(t) traverses the circle in the counterclockwise direction once over every interval of length 1.

Example Note that the function

$$h(t) = (\sin(2\pi t), \cos(2\pi t))$$

Unit circle parametrized by $f(t) = (\cos(t), \sin(t))$

also parametrizes the unit circle with center at (0,0) in \mathbb{R}^2 . However, h(t) traverses the circle in the clockwise direction once over every interval of length 1.

Example The function

$$f(t) = (\cos(2\pi t), \sin(2\pi t), t)$$

parametrizes a helix which wraps around the cylinder $x^2 + y^2 = 1$ in \mathbb{R}^3 .

Example The function

$$f(t) = (t, t^2)$$

parametrizes the parabola $y = x^2$.

Example The function

$$g(t) = (t^2, t^4)$$

parametrizes the parabola $Y = x^2$ with $x \ge 0$. Note that g(t) approaches (0,0) from the right as t goes from $-\infty$ to ∞ , and then moves away from (0,0) as t goes from 0 to ∞ .

6.2 Limits and continuity

Definition Given a function $f: \mathbb{R} \to \mathbb{R}^n$, we say that the *limit* of f(t) as t approaches a is \mathbf{L} , denoted

$$\lim_{t \to c} f(t) = L,$$

Helix parametrized by $f(t) = (\cos(2\pi t), \sin(2\pi t), t)$

if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(t) - \mathbf{L}| < \epsilon$$

whenever

$$0 < |t - a| < \delta.$$

Note that if $f(t) = (f_1(t), f_2(t), \dots, f_n(t))$ and $\mathbf{L} = (L_1, L_2, \dots, L_n)$, then

$$|f(t) - L| = \sqrt{(f_1(t) - L_1)^2 + (f_2(t) - L_2)^2 + \dots + (f_n(t) - L_n)^2}.$$

Hence $|f(t) - \mathbf{L}|$ is "small" if and only if $|f_k(t) - L_k|$ is "small" for k = 1, 2, ..., n. Consequently,

$$\lim_{t \to a} f(t) = \mathbf{L}$$

if and only if

$$\lim_{t \to a} f_k(t) = L_k$$

for $k = 1, 2, \ldots, n$. That is,

$$\lim_{t\to a} f(t) = \left(\lim_{t\to a} f_1(t), \lim_{t\to a} f_2(t), \dots, \lim_{t\to a} f_n(t)\right).$$

Example $\lim_{t \to \pi} (\cos(t), \sin(t), t^2) = (-1, 0, \pi^2).$

Note that limits from the left and right may be defined analogous to the definitions for functions from \mathbb{R} to \mathbb{R} .

Definition A function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be *continuous* at a point a in \mathbb{R} if $\lim_{t\to a} f(t) = f(a)$.

Proposition If $f(t) = (f_1(t), f_2(t), \dots, f_n(t))$, then f is continuous at a if and only if f_1, f_2, \dots, f_n are each continuous at a.

Note that continuous from the right and continuous from the left may be defined analogous to the definitions for functions from \mathbb{R} to \mathbb{R} .

Example $f(t) = (\cos(t), \sin(3\pi t), \sqrt{t})$ is continuous on $[0, \infty)$. Recall that this means f is continuous for all points t in $(0, \infty)$ and f is continuous from the right at 0.