Lecture 5: Lines and Planes

5.1 Lines in \mathbb{R}^{n}

Definition Given vectors \mathbf{p} and \mathbf{v} in \mathbb{R}^{n}, with $\mathbf{v} \neq \mathbf{0}$, the set of all vectors \mathbf{x} satisfying

$$
\mathbf{x}=\mathbf{p}+t \mathbf{v}
$$

$-\infty<t<\infty$, is called a line.
If $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right), \mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, and $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, then the vector equation

$$
\mathbf{x}=\mathbf{p}+t \mathbf{v}
$$

is equivalent to the parametric equations

$$
\begin{gathered}
x_{1}=p_{1}+v_{1} t \\
x_{2}=p_{2}+v_{2} t \\
\vdots \\
x_{n}=p_{n}+v_{n} t
\end{gathered}
$$

Example Let L be the line through the points $\mathbf{p}=(1,2,1)$ and $\mathbf{q}=(-1,4,4)$ in \mathbb{R}^{3}. If we let

$$
\mathbf{v}=\mathbf{q}-\mathbf{p}=(-2,2,3)
$$

then L has vector equation

$$
\mathbf{x}=(1,2,1)+t(-2,2,3)
$$

and parametric equations

$$
\begin{aligned}
& x=1-2 t, \\
& y=2+2 t, \\
& z=1+3 t .
\end{aligned}
$$

Definition We say lines L_{1} and L_{2} with vector equations $\mathbf{x}=\mathbf{p}_{1}+t \mathbf{v}_{1}$ and $\mathbf{x}=\mathbf{p}_{2}+t \mathbf{v}_{2}$ are parallel if \mathbf{v}_{1} and \mathbf{v}_{2} are parallel.

5.2 Lines in \mathbb{R}^{2}

Suppose L is a line in the plane with parametric equations

$$
\begin{aligned}
& x=\alpha+\beta t \\
& y=\gamma+\delta t
\end{aligned}
$$

Multiplying the first equation by δ and the second by β, we have

$$
\begin{aligned}
& \delta x=\alpha \delta+\beta \delta t \\
& \beta y=\beta \gamma+\beta \delta t
\end{aligned}
$$

Subtracting the second from the first gives us

$$
\delta x-\beta y=\alpha \delta-\beta \gamma
$$

If we let $a=\delta, b=-\beta$, and $c=\beta \gamma-\alpha \delta$, then we have

$$
a x+b y+c=0
$$

a familiar form for the equation of a line in \mathbb{R}^{2}, which we call the scalar form of the equation of L. Now let $\mathbf{n}=(a, b)$ and suppose $\left(x_{0}, y_{0}\right)$ is a point on L. Then $c=-a x_{0}-b y_{0}$, so we may rewrite the previous equation as

$$
\mathbf{n} \cdot(x, y)-\mathbf{n} \cdot\left(x_{0}, y_{0}\right)=0,
$$

or, equivalently,

$$
\mathbf{n} \cdot\left(x-x_{0}, y-y_{0}\right)=0 .
$$

Hence, geometrically, we may think of L as the set of all points (x, y) in the plane such that the vector from (x, y) to $\left(x_{0}, y_{0}\right)$ is orthogonal to \mathbf{n}.

Example Suppose

$$
4 x-3 y+1=0
$$

is a scalar equation for the line L in \mathbb{R}^{2}. Let $\mathbf{n}=(4,-3)$ and $\mathbf{p}=(-1,-1)$. Then \mathbf{p} is a point on L, \mathbf{n} is a normal vector for L, and we could write the scalar equation for L as

$$
(4,-3) \cdot(x+1, y+1)=0
$$

5.3 Planes in \mathbb{R}^{n}

Definition Given vectors \mathbf{p}, \mathbf{v}, and \mathbf{w} in \mathbb{R}^{n}, with $\mathbf{v} \neq \mathbf{0}, \mathbf{w} \neq \mathbf{0}$, and \mathbf{v} and \mathbf{w} not parallel, the set of all points \mathbf{x} satisfying

$$
\mathbf{x}=\mathbf{p}+t \mathbf{v}+s \mathbf{w}
$$

$-\infty<t<\infty,-\infty<s<\infty$, is called a plane.
If $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right), \mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right), \mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$, and $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, then the vector equation

$$
\mathbf{x}=\mathbf{p}+t \mathbf{v}+s \mathbf{w}
$$

is equivalent to the parametric equations

$$
\begin{gathered}
x_{1}=p_{1}+v_{1} t+w_{1} s, \\
x_{2}=p_{2}+v_{2} t+w_{2} s, \\
\vdots \\
x_{n}=p_{n}+v_{n} t+w_{n} s .
\end{gathered}
$$

Example Let P be the plane in \mathbb{R}^{3} through the points $\mathbf{p}=(1,1,2), \mathbf{q}=(2,-2,3)$, and $\mathbf{r}=(-2,3,4)$. If we let

$$
\mathbf{v}=\mathbf{q}-\mathbf{p}=(1,-3,1)
$$

and

$$
\mathbf{w}=\mathbf{r}-\mathbf{p}=(-3,2,2)
$$

then P has vector equation

$$
\mathbf{x}=(1,1,2)+t(1,-3,1)+s(-3,2,2)
$$

and parametric equations

$$
\begin{aligned}
& x=1+t-3 s \\
& y=1-3 t+2 s \\
& z=2+t+2 s
\end{aligned}
$$

5.4 Planes in \mathbb{R}^{3}

Given parametric equations for a plane P in \mathbb{R}^{3}, we could eliminate, in a manner similar to what we did for lines in \mathbb{R}^{2}, the t and s variables and arrive at a single scalar equation for P. That is, for appropriate scalars a, b, c, and d, we may view P as the set of all points (x, y, z) satisfying

$$
a x+b y+c z+d=0 .
$$

Moreover, if $\mathbf{n}=(a, b, c)$ and $\mathbf{p}=\left(x_{0}, y_{0}, z_{0}\right)$ is a point on P, then we may rewrite the scalar equation as

$$
\mathbf{n} \cdot(\mathbf{x}-\mathbf{p})=0
$$

or, equivalently,

$$
(a, b, c) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0 .
$$

That is, P is the set of all points \mathbf{x} such that \mathbf{n} is orthogonal to $\mathbf{x}-\mathbf{p}$.
Example As in the previous example, let P be the plane in \mathbb{R}^{3} through the points $\mathbf{p}=(1,1,2), \mathbf{q}=(2,-2,3)$, and $\mathbf{r}=(-2,3,4)$. If we let

$$
\mathbf{v}=\mathbf{q}-\mathbf{p}=(1,-3,1)
$$

and

$$
\mathbf{w}=\mathbf{r}-\mathbf{p}=(-3,2,2)
$$

then

$$
\mathbf{n}=\mathbf{v} \times \mathbf{w}=(-8,-5,-7)
$$

is a normal vector for P. Hence a scalar equation for P is given by

$$
(-8,-5,-7) \cdot(x-1, y-1, z-2)=0
$$

or, equivalently,

$$
8 x+5 y+7 z-27=0
$$

Definition Suppose P and Q are planes in R^{3} with scalar equations

$$
\mathbf{n} \cdot(\mathbf{x}-\mathbf{p})=0
$$

and

$$
\mathbf{m} \cdot(\mathbf{x}-\mathbf{q})=0,
$$

where \mathbf{n} and \mathbf{m} have been chosen so that $\mathbf{n} \cdot \mathbf{m} \geq 0$. We call the smallest positive angle between \mathbf{n} and \mathbf{m} the angle between P and Q.

Example Let θ be the angle between the planes P and Q with equations

$$
3 x-4 y+2 z=14
$$

and

$$
x+y-z=1 .
$$

Let $\mathbf{n}=(3,-4,2)$ and $\mathbf{m}=(-1,-1,1)$. Then

$$
\theta=\cos ^{-1}\left(\frac{3}{\sqrt{29} \sqrt{3}}\right)=\cos ^{-1}\left(\sqrt{\frac{3}{29}}\right)=1.2433
$$

where the final result has been rounded to 4 decimal places.
Let P be a plane with scalar equation $a x+b y+c z+d=0$ and let \mathbf{q} be point in \mathbb{R}^{3}. Let \mathbf{p} be a point on P and let $\mathbf{n}=(a, b, c)$ be a normal vector for P. If D is the distance from \mathbf{q} to P, then

$$
\begin{aligned}
D & =\left|\operatorname{proj}_{\mathbf{n}}(\mathbf{q}-\mathbf{p})\right| \\
& =\left|(\mathbf{q}-\mathbf{p}) \cdot \frac{\mathbf{n}}{|\mathbf{n}|}\right| \\
& =\frac{|\mathbf{q} \cdot \mathbf{n}-\mathbf{p} \cdot \mathbf{n}|}{|\mathbf{n}|} .
\end{aligned}
$$

Now $\mathbf{p} \cdot \mathbf{n}=-d$, so, if we let $\mathbf{q}=\left(x_{1}, x_{2}, x_{3}\right)$, we have

$$
D=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} .
$$

Example The distance D from the plane with equation $x+y+z=1$ to the point $(2,2,2)$ is

$$
D=\frac{2+2+2-1}{\sqrt{3}}=\frac{5}{\sqrt{3}} .
$$

Example A similar formula works for finding the distance from a point in the plane to a line. For example, the distance D from the point $(2,3)$ to the line $2 x+y-4=0$ is

$$
D=\frac{|4+3-4|}{\sqrt{5}}=\frac{3}{\sqrt{5}} .
$$

