Lecture 5: Lines and Planes

5.1 Lines in \mathbb{R}^n

Definition Given vectors \mathbf{p} and \mathbf{v} in \mathbb{R}^n , with $\mathbf{v} \neq \mathbf{0}$, the set of all vectors \mathbf{x} satisfying

$$\mathbf{x} = \mathbf{p} + t\mathbf{v},$$

 $-\infty < t < \infty$, is called a *line*.

If $\mathbf{p} = (p_1, p_2, ..., p_n)$, $\mathbf{v} = (v_1, v_2, ..., v_n)$, and $\mathbf{x} = (x_1, x_2, ..., x_n)$, then the vector equation

$$\mathbf{x} = \mathbf{p} + t\mathbf{v}$$

is equivalent to the *parametric equations*

$$x_1 = p_1 + v_1 t,$$

$$x_2 = p_2 + v_2 t,$$

$$\vdots$$

$$x_n = p_n + v_n t.$$

Example Let L be the line through the points $\mathbf{p} = (1, 2, 1)$ and $\mathbf{q} = (-1, 4, 4)$ in \mathbb{R}^3 . If we let

$$\mathbf{v} = \mathbf{q} - \mathbf{p} = (-2, 2, 3),$$

then L has vector equation

$$\mathbf{x} = (1, 2, 1) + t(-2, 2, 3)$$

and parametric equations

$$x = 1 - 2t,$$

 $y = 2 + 2t,$
 $z = 1 + 3t.$

Definition We say lines L_1 and L_2 with vector equations $\mathbf{x} = \mathbf{p}_1 + t\mathbf{v}_1$ and $\mathbf{x} = \mathbf{p}_2 + t\mathbf{v}_2$ are *parallel* if \mathbf{v}_1 and \mathbf{v}_2 are parallel.

5.2 Lines in \mathbb{R}^2

Suppose L is a line in the plane with parametric equations

$$\begin{aligned} x &= \alpha + \beta t, \\ y &= \gamma + \delta t. \end{aligned}$$

Multiplying the first equation by δ and the second by β , we have

$$\delta x = \alpha \delta + \beta \delta t,$$

$$\beta y = \beta \gamma + \beta \delta t.$$

Subtracting the second from the first gives us

$$\delta x - \beta y = \alpha \delta - \beta \gamma.$$

If we let $a = \delta$, $b = -\beta$, and $c = \beta \gamma - \alpha \delta$, then we have

$$ax + by + c = 0,$$

a familiar form for the equation of a line in \mathbb{R}^2 , which we call the *scalar* form of the equation of *L*. Now let $\mathbf{n} = (a, b)$ and suppose (x_0, y_0) is a point on *L*. Then $c = -ax_0 - by_0$, so we may rewrite the previous equation as

$$\mathbf{n} \cdot (x, y) - \mathbf{n} \cdot (x_0, y_0) = 0,$$

or, equivalently,

$$\mathbf{n} \cdot (x - x_0, y - y_0) = 0.$$

Hence, geometrically, we may think of L as the set of all points (x, y) in the plane such that the vector from (x, y) to (x_0, y_0) is orthogonal to **n**.

Example Suppose

4x - 3y + 1 = 0

is a scalar equation for the line L in \mathbb{R}^2 . Let $\mathbf{n} = (4, -3)$ and $\mathbf{p} = (-1, -1)$. Then \mathbf{p} is a point on L, \mathbf{n} is a normal vector for L, and we could write the scalar equation for L as

$$(4, -3) \cdot (x+1, y+1) = 0.$$

5.3 Planes in \mathbb{R}^n

Definition Given vectors \mathbf{p} , \mathbf{v} , and \mathbf{w} in \mathbb{R}^n , with $\mathbf{v} \neq \mathbf{0}$, $\mathbf{w} \neq \mathbf{0}$, and \mathbf{v} and \mathbf{w} not parallel, the set of all points \mathbf{x} satisfying

$$\mathbf{x} = \mathbf{p} + t\mathbf{v} + s\mathbf{w},$$

 $-\infty < t < \infty, -\infty < s < \infty$, is called a *plane*.

If $\mathbf{p} = (p_1, p_2, \dots, p_n)$, $\mathbf{v} = (v_1, v_2, \dots, v_n)$, $\mathbf{w} = (w_1, w_2, \dots, w_n)$, and $\mathbf{x} = (x_1, x_2, \dots, x_n)$, then the vector equation

$$\mathbf{x} = \mathbf{p} + t\mathbf{v} + s\mathbf{w}$$

is equivalent to the *parametric equations*

$$x_1 = p_1 + v_1t + w_1s,$$

$$x_2 = p_2 + v_2t + w_2s,$$

$$\vdots$$

$$x_n = p_n + v_nt + w_ns.$$

Example Let P be the plane in \mathbb{R}^3 through the points $\mathbf{p} = (1, 1, 2)$, $\mathbf{q} = (2, -2, 3)$, and $\mathbf{r} = (-2, 3, 4)$. If we let

$$\mathbf{v} = \mathbf{q} - \mathbf{p} = (1, -3, 1)$$

and

$$\mathbf{w} = \mathbf{r} - \mathbf{p} = (-3, 2, 2),$$

then P has vector equation

$$\mathbf{x} = (1, 1, 2) + t(1, -3, 1) + s(-3, 2, 2)$$

and parametric equations

$$x = 1 + t - 3s,$$

 $y = 1 - 3t + 2s$
 $z = 2 + t + 2s.$

5.4 Planes in \mathbb{R}^3

Given parametric equations for a plane P in \mathbb{R}^3 , we could eliminate, in a manner similar to what we did for lines in \mathbb{R}^2 , the t and s variables and arrive at a single scalar equation for P. That is, for appropriate scalars a, b, c, and d, we may view P as the set of all points (x, y, z) satisfying

$$ax + by + cz + d = 0.$$

Moreover, if $\mathbf{n} = (a, b, c)$ and $\mathbf{p} = (x_0, y_0, z_0)$ is a point on P, then we may rewrite the scalar equation as

$$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0,$$

or, equivalently,

$$(a, b, c) \cdot (x - x_0, y - y_0, z - z_0) = 0$$

That is, P is the set of all points \mathbf{x} such that \mathbf{n} is orthogonal to $\mathbf{x} - \mathbf{p}$.

Example As in the previous example, let *P* be the plane in \mathbb{R}^3 through the points $\mathbf{p} = (1, 1, 2), \mathbf{q} = (2, -2, 3), \text{ and } \mathbf{r} = (-2, 3, 4)$. If we let

$$\mathbf{v} = \mathbf{q} - \mathbf{p} = (1, -3, 1)$$

and

 $\mathbf{w} = \mathbf{r} - \mathbf{p} = (-3, 2, 2),$

then

$$\mathbf{n} = \mathbf{v} \times \mathbf{w} = (-8, -5, -7)$$

is a normal vector for P. Hence a scalar equation for P is given by

$$(-8, -5, -7) \cdot (x - 1, y - 1, z - 2) = 0,$$

or, equivalently,

$$8x + 5y + 7z - 27 = 0.$$

Definition Suppose P and Q are planes in \mathbb{R}^3 with scalar equations

$$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$$

and

$$\mathbf{m} \cdot (\mathbf{x} - \mathbf{q}) = 0,$$

where **n** and **m** have been chosen so that $\mathbf{n} \cdot \mathbf{m} \ge 0$. We call the smallest positive angle between **n** and **m** the *angle* between *P* and *Q*.

Example Let θ be the angle between the planes P and Q with equations

$$3x - 4y + 2z = 14$$

and

x + y - z = 1.

Let $\mathbf{n} = (3, -4, 2)$ and $\mathbf{m} = (-1, -1, 1)$. Then

$$\theta = \cos^{-1}\left(\frac{3}{\sqrt{29}\sqrt{3}}\right) = \cos^{-1}\left(\sqrt{\frac{3}{29}}\right) = 1.2433,$$

where the final result has been rounded to 4 decimal places.

Let P be a plane with scalar equation ax + by + cz + d = 0 and let **q** be point in \mathbb{R}^3 . Let **p** be a point on P and let **n** = (a, b, c) be a normal vector for P. If D is the distance from **q** to P, then

$$D = |\operatorname{proj}_{\mathbf{n}}(\mathbf{q} - \mathbf{p})|$$
$$= \left| (\mathbf{q} - \mathbf{p}) \cdot \frac{\mathbf{n}}{|\mathbf{n}|} \right|$$
$$= \frac{|\mathbf{q} \cdot \mathbf{n} - \mathbf{p} \cdot \mathbf{n}|}{|\mathbf{n}|}.$$

Now $\mathbf{p} \cdot \mathbf{n} = -d$, so, if we let $\mathbf{q} = (x_1, x_2, x_3)$, we have

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

Example The distance D from the plane with equation x + y + z = 1 to the point (2, 2, 2) is

$$D = \frac{2+2+2-1}{\sqrt{3}} = \frac{5}{\sqrt{3}}.$$

Example A similar formula works for finding the distance from a point in the plane to a line. For example, the distance D from the point (2,3) to the line 2x + y - 4 = 0 is

$$D = \frac{|4+3-4|}{\sqrt{5}} = \frac{3}{\sqrt{5}}.$$