
Lecture 4: The Cross Product

4.1 The cross product

There is no general way to define multiplication for vectors in Rn, with the product also
being a vector of the same dimension, which is useful for our current purposes. However,
in the special case of R3 there is a product which we will find useful. One motivation for
this product is to consider the following problem: Given two vectors x = (x1, x2, x3) and
y = (y1, y2, y3) in R3, not parallel to one another, find a third vector w = (w1, w2, w3)
which is orthogonal to both x and y. Thus we want w ·x = 0 and w ·y = 0, which means
we need to solve the equations

x1w1 + x2w2 + x3w3 = 0
y1w1 + y2w2 + y3w3 = 0

for w1, w2, and w3. Multiplying the first equation by y3 and the second by x3 gives us

x1y3w1 + x2y3w2 + x3y3w3 = 0
x3y1w1 + x3y2w2 + x3y3w3 = 0.

Subtracting the second equation from the first, we have

(x1y3 − x3y1)w1 + (x2y3 − x3y2)w2 = 0.

One solution is given by setting

w1 = x2y3 − x3y2

w2 = −(x1y3 − x3y1) = x3y1 − x1y3.

Finally, from our first equation, we now have

x3w3 = −x1(x2y3 − x3y2)− x2(x3y1 − x1y3) = x1x3y2 − x2x3y1,

from which we obtain the solution

w3 = x1y2 − x2y1.

The choices made in arriving at these solutions are not unique, but they are the standard
choices which define w as the cross or vector product of x and y.

Definition Given vectors x = (x1, x2, x3) and y = (y1, y2, y3) in R3, the vector

x× y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)

is called the cross product, or vector product, of x and y.
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Example If x = (1, 2, 3) and y = (1,−1, 1), then

x× y = (2 + 3, 3− 1,−1− 2) = (5, 2,−3).

Note that
x · (x× y) = 5 + 4− 9 = 0

and
y · (x× y) = 5− 2− 3 = 0,

showing that x ⊥ (x× y) and y ⊥ (x× y) as claimed. It is also interesting to note that

y × x = (−3− 2, 1− 3, 2 + 1) = (−5,−2, 3) = −(x× y).

This last calculation holds in general for all vectors x and y in R3.

Proposition Suppose x, y, and z are vectors in R3 and α is any real number. Then

x× y = −(y × x),

x× (y + z) = (x× y) + (x× z),

(x + y)× z = (x× z) + (y × z),

α(x× y) = (αx)× y = x× (αy),

and
x× 0 = 0.

Verification of these properties is straightforward. Also, notice that

i× j = k,

j× k = i,

and
k× i = j;

that is, the cross product of two standard basis vectors is either the other standard basis
vector or its negative. Moreover, note that in these cases the cross product points in the
direction your thumb would point if you were to wrap the fingers of your right hand from
the first vector to the second. This is in fact always true and results in what is known as
the right-hand rule for the orientation of the cross product, as shown below. Hence given
two vectors x and y, we can always determine the direction of x× y.

x

y

x y

The right-hand rule
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To complete our geometric identification of x× y, we need to know only its length. Now
if θ is the angle between x and y, then

|x× y|2 = (x2y3 − x3y2)2 + (x3y1 − x1y3)2 + (x1y2 − x2y1)2

= x2
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3)(y2
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3)− (x2
1y

2
1 + x2

2y
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− (2x2x3y2y3 + 2x1x3y1y3 + 2x1x2y1y2)

= (x2
1 + x2

2 + x2
3)(y2

1 + y2
2 + y2

3)− (x1y1 + x2y2 + x3y3)2

= |x|2|y|2 − (x · y)2

= |x|2|y|2 − (|x||y| cos(θ))2

= |x|2|y|2(1− cos2(θ))

= |x|2|y|2 sin2(θ).

Taking square roots, and noting that sin(θ) ≥ 0 since, by the definition of the angle between
two vectors, 0 ≤ θ ≤ π, we have the following result.

Proposition If θ is the angle between two vectors x and y in R3, then

|x× y| = |x||y| sin(θ).

The last theorem has several interesting consequences. One of these comes from recognizing
that if we draw a parallelogram with x and y as adjacent sides, as in the figure below,
then the height of the parallelogram is |y| sin(θ), where θ is the angle between x and y.
Hence the area of the parallelogram is |x||y| sin(θ), which, by our proposition, is |x× y|.

x

y

h

θ

Height of the parallelogram is h = |y| sin(θ)

Proposition Suppose x and y are two vectors in R3. Then the area of the parallelogram
which has x and y for adjacent sides is |x× y|.

Example Consider the parallelogram P with vertices at (0, 0, 0), (6, 1, 1), (8, 5, 2), and
(2, 4, 1). Two adjacent sides are specified by the vectors x = (6, 1, 1) and y = (2, 4, 1), so
the area of P is

|x× y| = |(1− 4, 2− 6, 24− 2)| = |(−3,−4, 22)| =
√

509.
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Parallelogram with vertices at (0, 0, 0), (6, 1, 1), (8, 5, 2), and (2, 4, 1)

Example Consider the parallelogram P in the plane with vertices at (1, 1, ), (3, 2), (4, 4),
and (2, 3). Two adjacent sides are given by the vectors from (1, 1) to (3, 2), that is

x = (3, 2)− (1, 1) = (2, 1),

and from (1, 1) to (2, 3), that is,

y = (2, 3)− (1, 1) = (1, 2).

However, since these vectors are in R2, not in R3, we cannot compute their cross product.
To get around this, we consider the vectors w = (2, 1, 0) and v = (1, 2, 0) which are
adjacent sides of the same parallelogram viewed as lying in R3. Then the area of P is
given by

|w × v| = |(0, 0, 4− 1)| = |(0, 0, 3)| = 3.
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Parallelogram with vertices at (1, 1), (3, 2), (4, 4), and (2, 3)
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Parallelepiped with adjacent edges x, y, and z

It is easy to extend the result of the previous theorem to computing the volume of a
parallelepiped in R3. Suppose x, y, and z are adjacent edges of parallelepiped P . Then
the volume V of P is |x× y|, which is the area of the base, multiplied by the height of P ,
which is the length of the projection of z onto x× y. Since the latter is equal to∣∣∣∣z · x× y

|x× y|

∣∣∣∣ ,
we have

V = |x× y|
∣∣∣∣z · x× y
|x× y|

∣∣∣∣ = |z · (x× y)|.

Proposition The volume of a parallelepiped with adjacent edges x, y, and z is |z·(x×y)|.

Definition Given three vectors x, y, and z in R3, the quantity x · (y × z) is called the
scalar triple product of x, y, and x.

Example Let x = (1, 4, 1), y = (−3, 1, 1), and z = (0, 1, 5) be adjacent edges of paral-
lelepiped P . Then

x× y = (4− 1,−3− 1, 1 + 12) = (3,−4, 13),

so
z · (x× y) = 0− 4 + 65 = 61.

Hence the volume of P is 61.

The next result follows from the fact that the angle between parallel vectors is either 0 or
π.

Proposition Nonzero vectors x and y in R3 are parallel if and only if x× y = 0.
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Parallelepiped with adjacent edges x = (1, 4, 1), y = (−3, 1, 1), z = (0, 1, 5)

Note that, in particular, for any vector x in R3, x× x = 0.

You may find familiarity with determinants of 3 × 3 matrices helpful in computing cross
products. Recall that the determinant of a 2× 2 matrix is∣∣∣∣ a b

c d

∣∣∣∣ = ad− bc

and the determinant of a 3× 3 matrix is∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣ b2 b3
c2 c3

∣∣∣∣− a2

∣∣∣∣ b1 b3
c1 c3

∣∣∣∣− a3

∣∣∣∣ b1 b1
c1 c2

∣∣∣∣ .
Symbolically, we may remember the formula for the cross product of x = (x1, x2, x3) and
y = (y1, y2, y3) as

x× y =

∣∣∣∣∣∣
i j k
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣
= (x2y3 − x3y2)i− (x1y3 − x3y1)j + (x1y2 − x2y1)k
= (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).


