
Lecture 3: The Dot Product

3.1 The angle between vectors

Suppose x = (x1, x2) and y = (y1, y2) are two vectors in R2, neither of which is the zero
vector 0. Let α and β be the angles between x and y and the positive horizontal axis,
respectively, measured in the counterclockwise direction. Supposing α ≥ β, let θ = α− β.
Then θ is the angle between x and y measured in the counterclockwise direction. From
the subtraction formula for cosine we have

cos(θ) = cos(α− β) = cos(α) cos(β) + sin(α) sin(β).

Now
cos(α) =

x1

|x|
,

cos(β) =
y1

|y|
,

sin(α) =
x2

|x|
,

and
sin(β) =

y2

|y|
.

Thus, we have

cos(θ) =
x1y1

|x||y|
+

x2y2

|x||y|
=
x1y1 + x2y2

|x||y|
.

α
β

θ

The angle between two vectors in R2

Example Let θ be the smallest angle between x = (2, 1) and y = (1, 3), measured in
the counterclockwise direction. Then

cos(θ) =
(2)(1) + (1)(3)
|x||y|

=
5√

5
√

10
=

1√
2
.
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Hence

θ = cos−1

(
1√
2

)
=
π

4
.

With more work it is possible to show that if x = (x1, x2, x3) and y = (y1, y2, y3) are two
vectors in R3, neither of which is the zero vector 0, and θ is the smallest positive angle
between x and y, then

cos(θ) =
x1y1 + x2y2 + x3y3

|x||y|

3.2 The dot product

Definition If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are vectors in Rn, then the
dot product of x and y, denoted x · y, is given by

x · y = x1y1 + x2y2 + · · ·+ xnyn.

Note that the dot product of two vectors is a scalar, not another vector. Because of this,
the dot product is also called the scalar product. It is also an example of what is called an
inner product and is often denoted by 〈x,y〉.

Example If x = (1, 2,−3,−2) and y = (−1, 2, 3, 5), then

x · y = (1)(−1) + (2)(2) + (−3)(3) + (−2)(5) = −1 + 4− 9− 10 = −16.

Proposition For any vectors x, y, and z in Rn and scalar α,

x · y = y · x,

x · (y + z) = x · y + x · z,

(αx) · y = α(x · y),

0 · x = 0,

x · x ≥ 0,

x · x = 0 only if x = 0,

and
x · x = |x|2.

At this point we can say that if x and y are two nonzero vectors in either R2 or R3 and θ
is the smallest positive angle between x and y, then

cos(θ) =
x · y
|x||y|

.
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We would like to be able to make the same statement about the angle between two vectors
in any dimension, but we would first have to define what we mean by the angle between
two vectors in Rn for n > 3. The simplest way to do this is to turn things around and use
the dot product to define the angle. However, in order for this to work we must first know
that

−1 ≤ x · y
|x||y|

≤ 1,

since this is the range of values for the cosine function. This fact follows from the following
inequality.

Cauchy-Schwarz Inequality For all x and y in Rn,

|x · y| ≤ |x||y|.

Proof To see why this is so, first note that both sides of of the inequality are 0 when
y = 0, and hence are equal in this case. Assuming x and y are fixed vectors in Rn, with
y 6= 0, let t be a real number and consider the function

f(t) = (x + ty) · (x + ty).

Now f(t) ≥ 0 for all t and, moreover,

f(t) = x · x + x · ty + ty · x + ty · ty = |x|2 + 2(x · y)t+ |y|2t2.

Hence f is a quadratic polynomial with at most one root. Since the roots of f are, as given
by the quadratic formula,

−2(x · y)±
√

4(x · y)2 − 4|x|2|y|2
2|y|2

,

it follows that we must have

4(x · y)2 − 4|x|2|y|2 ≤ 0.

Thus
(x · y)2 ≤ |x|2|y|2,

and so
|x · y| ≤ |x||y|.

Note that |x · y| = |x||y| if and only if there is some value of t for which f(t) = 0, which
happens if and only if x + ty = 0, that is, x = −ty, for some value of t. Moreover, if
y = 0, then 0 = 0x for any x in Rn. Hence, in either case, the Cauchy-Schwarz inequality
becomes an equality if and only if either x is a scalar multiple of y or y is a scalar multiple
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of x. If x and y are nonzero vectors, then we have equality if and only if x and y are
parallel.

With the Cauchy-Schwarz inequality we have

−1 ≤ x · y
|x||y|

≤ 1,

for any nonzero vectors x and y in Rn. Thus we may now state the following definition.

Definition If x and y are nonzero vectors in Rn, then we call

θ = cos−1

(
x · y
|x||y|

)
the angle between x and y.

Example Suppose x = (1, 2, 3) and y = (1,−2, 2). Then x·y = 1−4+6 = 3, |x| =
√

14,
and |y| = 3, so if θ is the angle between x and y, we have

cos(θ) =
3

3
√

14
=

1√
14
.

Hence

θ = cos−1

(
1√
14

)
= 1.3002,

where the final value has been rounded to four decimal places.

Example Suppose x = (2,−1, 3, 1) and y = (−2, 3, 1,−4). Then x · y = −8, |x| =
√

15,
and |y| =

√
30, so if θ is the angle between x and y, we have

θ = cos−1

(
−8√

15
√

30

)
= 1.9575,

where the final value has been rounded to four decimal places.

3.3 Direction angles

Let x be a vector in Rn and let αk, be the angle between x and the kth axis. We call α1,
α2, . . . , αn the direction angles of x. Now αk is the angle between x and the standard
basis vector ek. Thus

cos(αk) =
x · ek
|x||ek|

=
xk
|x|
.

We call cos(α1), cos(α2), . . . , cos(αn) the direction cosines of x.
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Example If x = (3, 1, 2)in R3, then |x| =
√

14 and the direction cosines of x are

cos(α1) =
3√
14
,

cos(α2) =
1√
14
,

and

cos(α3) =
2√
14
.

Hence, to four decimal places,
α1 = 0.6405,

α2 = 1.3002,

and
α3 = 1.0069.

3.4 Orthogonality and projections

Note that if x and y are nonzero vectors in Rn with x · y = 0, then the angle between x
and y is

cos−1(0) =
π

2
.

Definition Vectors x and y in Rn are said to be orthogonal (or perpendicular), denoted
x ⊥ y, if x · y = 0.

It is a convenient convention of mathematics not to restrict the definition of orthogonality
to nonzero vectors. Hence it follows from the definition that 0 is orthogonal to every vector
in Rn. Moreover, 0 is the only vector in Rn which has this property.

Example The vectors x = (−1,−2) and y = (1, 2) are both orthogonal to z = (2,−1)
in R2. Note that y = −x and, in fact, any scalar multiple of x is orthogonal to z.

Example In R4, x = (1,−1, 1,−1) is orthogonal to y = (1, 1, 1, 1). As in the previous
example, any scalar multiple of x is orthogonal to y.

Perhaps the most important application of the dot product is in finding the orthogonal
projection of one vector onto another. This is illustrated in the figure below, where w
represents the projection of x onto y. The result of the projection is to break x into
the sum of two vectors, w, which is parallel to y, and x − w, which is orthogonal to y,
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a procedure which is frequently very useful. To compute w, note that if θ is the angle
between x and y, then

|w| = |x|| cos(θ)| = |x| |x · y|
|x||y|

=
∣∣∣∣x · y
|y|

∣∣∣∣ = |x · u|,

where
u =

y
|y|

is the unit vector in the direction of y. Noting that w has the opposite direction of y when
θ > π

2 , that is, when x · u < 0, we see that w = (x · u)u.

θ

x w−

w

y

x

The projection of x onto y

Definition Given vectors x and y, y 6= 0, in Rn, the vector

projyx = (x · u)u,

where u is the unit vector in the direction of y, is called the vector projection, or simply
projection, of x onto y. We call

compyx = x · u
the scalar projection of x onto y.

Example Suppose x = (1, 2, 3) and y = (1, 4, 0). Then the unit vector in the direction
of y is

u =
1√
17

(1, 4, 0),

so the scalar projection of x onto y is

compyx = x · u =
1√
17

(1 + 8 + 0) =
9√
17
.

Thus the vector projection of x onto y is

projyx =
9√
17

u =
9
17

(1, 4, 0) =
(

9
17
,

36
17
, 0
)
.


