Lecture 27: Green's Theorem

27.1 Green's Theorem on a rectangle

Suppose $F(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ is a continuous vector field defined on a closed rectangle $D=[a, b] \times[c, d]$. Let ∂D be the boundary of D oriented in the counterclockwise direction. Let C_{1}, C_{2}, C_{3}, and C_{4} be the sides of ∂D in counterclockwise order, starting with the bottom. We parametrize C_{1} by $\alpha(t)=(t, c), a \leq t \leq b ; C_{2}$ by $\beta(t)=(b, t)$, $c \leq t \leq d ;-C_{3}$ by $\gamma(t)=(t, d), a \leq t \leq b$; and $-C_{4}$ by $\delta(t)=(a, t), c \leq t \leq d$. Then

$$
\begin{aligned}
\int_{\partial D} F \cdot d \mathbf{r} & =\int_{C_{1}} F \cdot d \mathbf{r}+\int_{C_{2}} F \cdot d \mathbf{r}+\int_{C_{3}} F \cdot d \mathbf{r}+\int_{C_{4}} F \cdot d \mathbf{r} \\
& =\int_{C_{1}} F \cdot d \mathbf{r}+\int_{C_{2}} F \cdot d \mathbf{r}-\int_{-C_{3}} F \cdot d \mathbf{r}-\int_{-C_{4}} F \cdot d \mathbf{r} \\
& =\int_{a}^{b} P(t, c) d t+\int_{c}^{d} Q(b, t) d t-\int_{a}^{b} P(t, d) d t-\int_{c}^{d} Q(a, t) d t \\
& =-\int_{a}^{b}(P(t, d)-P(t, c)) d t+\int_{c}^{d}(Q(b, t)-Q(a, t)) d t \\
& =-\int_{a}^{b} \int_{c}^{d} \frac{\partial}{\partial y} P(t, y) d y d t+\int_{c}^{d} \int_{a}^{b} \frac{\partial}{\partial x} Q(x, t) d x d t \\
& =-\int_{a}^{b} \int_{c}^{d} \frac{\partial}{\partial y} P(x, y) d y d x+\int_{c}^{d} \int_{a}^{b} \frac{\partial}{\partial x} Q(x, y) d x d y \\
& =\int_{a}^{b} \int_{c}^{d}\left(\frac{\partial}{\partial x} Q(x, y)-\frac{\partial}{\partial y} P(x, y)\right) d y d x \\
& =\int_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A .
\end{aligned}
$$

This result is a special case of Green's Theorem.
Example We will evaluate

$$
\int_{C} x^{2} y d x+x y d y
$$

where C is the rectangle with vertices $(0,0),(3,0),(3,1)$, and $(0,1)$, oriented in the counterclockwise direction. Using Green's Theorem,

$$
\begin{aligned}
\int_{C} x^{2} y d x+x y d y & =\int_{0}^{3} \int_{0}^{1}\left(y-x^{2}\right) d y d x \\
& =\int_{0}^{3}\left(\frac{1}{2}-x^{2}\right) d x \\
& =\frac{3}{2}-9 \\
& =-\frac{15}{2}
\end{aligned}
$$

27.2 Green's Theorem

Definition A simple closed curve in \mathbb{R}^{n} is a curve which is closed and does not intersect itself. The positive orientation of a simple closed curve is the counterclockwise orientation.

Green's Theorem Suppose $F(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ is a continuous vector field defined on a region D in \mathbb{R}^{2}. Moreover, suppose P and Q have continuous partial derivatives and that the boundary ∂D is a simple closed curve with positive orientation. Then

$$
\int_{\partial D} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A .
$$

Example Let C be the triangle with vertices at $(0,0),(1,1)$, and $(0,1)$, with positive orientation. Then

$$
\begin{aligned}
\int_{C} x y d x-x d y & =\int_{0}^{1} \int_{0}^{y}(-1-x) d x d y \\
& =-\int_{0}^{1} \int_{0}^{y}(1+x) d x d y \\
& =-\int_{0}^{1}\left(y+\frac{y^{2}}{2}\right) d y \\
& =-\left(\frac{1}{2}+\frac{1}{6}\right) \\
& =-\frac{2}{3}
\end{aligned}
$$

Note that each of the vector fields

$$
\begin{gathered}
F(x, y)=(0, x) \\
F(x, y)=(-y, 0)
\end{gathered}
$$

and

$$
F(x, y)=\frac{1}{2}(-y, x)
$$

has the property that

$$
\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=1
$$

It follows that if A is the area of a region D which satisfies the conditions of Green's theorem, then

$$
\begin{aligned}
A & =\iint_{D} d A=\int_{\partial D} x d y \\
A & =\iint_{D} d A=-\int_{\partial D} y d x
\end{aligned}
$$

and

$$
A=\iint_{D} d A=\frac{1}{2} \int_{\partial D} x d y-y d x
$$

Example Let E be the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

We may parametrize E, in the counterclockwise direction, using $\varphi(t)=(a \cos (t), b \sin (t))$, $0 \leq t \leq 2 \pi$. If A is the area of the region D enclosed by E, then

$$
\begin{aligned}
A & =\iint_{D} d A \\
& =\frac{1}{2} \int_{E} x d y-y d x \\
& =\frac{1}{2} \int_{0}^{2 \pi}(-b \sin (t), a \cos (t)) \cdot(-a \sin (t), b \cos (t) d t \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left(a b \sin ^{2}(t)+a b \cos ^{2}(t)\right) d t \\
& =\frac{1}{2} \int_{0}^{2 \pi} a b d t \\
& =\pi a b
\end{aligned}
$$

Note that if $F(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}, P$ and Q have continuous partial derivatives on an open simply connected region D, and

$$
\frac{\partial}{\partial y} P(x, y)=\frac{\partial}{\partial x} Q(x, y)
$$

for all (x, y) in D, it now follows, by Green's Theorem, that

$$
\int_{C} F \cdot d \mathbf{r}=0
$$

for any simply closed curve in C. It follows that F is a conservative vector field.
Notation: If C is a closed curve with orientation in the counterclockwise direction, the line integral

$$
\int_{C} F \cdot d \mathbf{r}
$$

may be denoted

$$
\oint_{C} F \cdot d \mathbf{r}
$$

