
Lecture 27: Green’s Theorem

27.1 Green’s Theorem on a rectangle

Suppose F (x, y) = P (x, y)i + Q(x, y)j is a continuous vector field defined on a closed
rectangle D = [a, b]× [c, d]. Let ∂D be the boundary of D oriented in the counterclockwise
direction. Let C1, C2, C3, and C4 be the sides of ∂D in counterclockwise order, starting
with the bottom. We parametrize C1 by α(t) = (t, c), a ≤ t ≤ b; C2 by β(t) = (b, t),
c ≤ t ≤ d; −C3 by γ(t) = (t, d), a ≤ t ≤ b; and −C4 by δ(t) = (a, t), c ≤ t ≤ d. Then∫

∂D

F · dr =
∫
C1

F · dr +
∫
C2

F · dr +
∫
C3

F · dr +
∫
C4

F · dr

=
∫
C1

F · dr +
∫
C2

F · dr−
∫
−C3

F · dr−
∫
−C4

F · dr

=
∫ b

a

P (t, c)dt+
∫ d

c

Q(b, t)dt−
∫ b

a

P (t, d)dt−
∫ d

c

Q(a, t)dt

= −
∫ b

a

(P (t, d)− P (t, c))dt+
∫ d

c

(Q(b, t)−Q(a, t))dt

= −
∫ b

a

∫ d

c

∂

∂y
P (t, y)dydt+

∫ d

c

∫ b

a

∂

∂x
Q(x, t)dxdt

= −
∫ b

a

∫ d

c

∂

∂y
P (x, y)dydx+

∫ d

c

∫ b

a

∂

∂x
Q(x, y)dxdy

=
∫ b

a

∫ d

c

(
∂

∂x
Q(x, y)− ∂

∂y
P (x, y)

)
dydx

=
∫ ∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA.

This result is a special case of Green’s Theorem.

Example We will evaluate ∫
C

x2ydx+ xydy,

where C is the rectangle with vertices (0, 0), (3, 0), (3, 1), and (0, 1), oriented in the coun-
terclockwise direction. Using Green’s Theorem,∫

C

x2ydx+ xydy =
∫ 3

0

∫ 1

0

(y − x2)dydx

=
∫ 3

0

(
1
2
− x2

)
dx

=
3
2
− 9

= −15
2
.
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27.2 Green’s Theorem

Definition A simple closed curve in Rn is a curve which is closed and does not intersect
itself. The positive orientation of a simple closed curve is the counterclockwise orientation.

Green’s Theorem Suppose F (x, y) = P (x, y)i+Q(x, y)j is a continuous vector field de-
fined on a region D in R2. Moreover, suppose P and Q have continuous partial derivatives
and that the boundary ∂D is a simple closed curve with positive orientation. Then∫

∂D

Pdx+Qdy =
∫ ∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA.

Example Let C be the triangle with vertices at (0, 0), (1, 1), and (0, 1), with positive
orientation. Then ∫

C

xydx− xdy =
∫ 1

0

∫ y

0

(−1− x)dxdy

= −
∫ 1

0

∫ y

0

(1 + x)dxdy

= −
∫ 1

0

(
y +

y2

2

)
dy

= −
(

1
2

+
1
6

)
= −2

3
.

Note that each of the vector fields

F (x, y) = (0, x),

F (x, y) = (−y, 0),

and
F (x, y) =

1
2

(−y, x)

has the property that
∂Q

∂x
− ∂P

∂y
= 1.

It follows that if A is the area of a region D which satisfies the conditions of Green’s
theorem, then

A =
∫ ∫

D

dA =
∫
∂D

xdy,

A =
∫ ∫

D

dA = −
∫
∂D

ydx,
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and
A =

∫ ∫
D

dA =
1
2

∫
∂D

xdy − ydx.

Example Let E be the ellipse
x2

a2
+
y2

b2
= 1.

We may parametrize E, in the counterclockwise direction, using ϕ(t) = (a cos(t), b sin(t)),
0 ≤ t ≤ 2π. If A is the area of the region D enclosed by E, then

A =
∫ ∫

D

dA

=
1
2

∫
E

xdy − ydx

=
1
2

∫ 2π

0

(−b sin(t), a cos(t)) · (−a sin(t), b cos(t)dt

=
1
2

∫ 2π

0

(ab sin2(t) + ab cos2(t))dt

=
1
2

∫ 2π

0

abdt

= πab.

Note that if F (x, y) = P (x, y)i +Q(x, y)j, P and Q have continuous partial derivatives on
an open simply connected region D, and

∂

∂y
P (x, y) =

∂

∂x
Q(x, y)

for all (x, y) in D, it now follows, by Green’s Theorem, that∫
C

F · dr = 0

for any simply closed curve in C. It follows that F is a conservative vector field.

Notation: If C is a closed curve with orientation in the counterclockwise direction, the line
integral ∫

C

F · dr

may be denoted ∮
C

F · dr.


