Lecture 25: Line Integrals

25.1 The line integral of a scalar field

Suppose $\varphi:[a, b] \rightarrow \mathbb{R}^{n}$ is a smooth parametrization of a curve C and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a continuous scalar field. Let

$$
s=\int_{a}^{t}\left|\varphi^{\prime}(u)\right| d u
$$

Then s is the length of the piece of C extending from $\varphi(a)$ to $\varphi(t)$. Note that

$$
\frac{d s}{d t}=\left|\varphi^{\prime}(t)\right|
$$

We now define

$$
\int_{C} f(\mathbf{x}) d s=\int_{a}^{b} f(\varphi(t)) \frac{d s}{d t} d t=\int_{a}^{b} f(\varphi(t))\left|\varphi^{\prime}(t)\right| d t
$$

which we call the line, or path, integral of f along C. In particular, if $n=3$ and $\varphi(t)=$ $(x(t), y(t), z(t))$, then

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

if $n=2$ and $\varphi(t)=(x(t), y(t))$, then

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Geometrically, we may think of the latter integral as the area of a "fence" with base along the curve C and height given by $f(x, y)$.

Example Let C be the circular helix parametrized by

$$
\varphi(t)=(\cos (t), \sin (t), t)
$$

for $0 \leq t \leq 2 \pi$ and let

$$
f(x, y, z)=x^{2}+y^{2}+z^{2} .
$$

Then

$$
|\varphi(t)|=\sqrt{\sin ^{2}(t)+\cos ^{2}(t)+1}=\sqrt{2}
$$

and

$$
f(\varphi(t))=\cos ^{2}(t)+\sin ^{2}(t)+t^{2}=1+t^{2}
$$

Hence

$$
\begin{aligned}
\int_{C} f(x, y, z) d s & =\int_{0}^{2 \pi}\left(1+t^{2}\right) \sqrt{2} d t \\
& =\sqrt{2}\left(2 \pi+\left.\frac{t^{3}}{3}\right|_{0} ^{2 \pi}\right) \\
& =\sqrt{2}\left(2 \pi+\frac{8 \pi^{3}}{3}\right) \\
& =2 \pi \sqrt{2}\left(1+\frac{4 \pi^{2}}{3}\right)
\end{aligned}
$$

Example We will evaluate $\int_{C} x y d s$ where C is the triangle with vertices $(0,0),(1,0)$ and $(1,1)$. Let C_{1} be the line from $(0,0)$ to $(1,0), C_{2}$ the line from $(1,0)$ to $(1,1)$, and C_{3} the line from $(1,1)$ to $(0,0)$. Now $\alpha(t)=(t, 0), 0 \leq t \leq 1$, parametrizes $C_{1}, \beta(t)=(1, t)$, $0 \leq t \leq 1$, parametrizes C_{2}, and $\gamma(t)=(1-t, 1-t), 0 \leq t \leq 1$, parametrizes C_{3}, so

$$
\begin{aligned}
& \int_{C_{1}} x y d s=\int_{0}^{1} 0 d t=0 \\
& \int_{C_{2}} x y d s=\int_{0}^{1} t d t=\frac{1}{2}
\end{aligned}
$$

and

$$
\int_{C_{3}} x y d s=\int_{0}^{1}(1-t)^{2} \sqrt{2} d t=-\left.\frac{\sqrt{2}(1-t)^{3}}{3}\right|_{0} ^{1}=\frac{\sqrt{2}}{3}
$$

Thus

$$
\int_{C} x y d s=\int_{C_{1}} x y d s+\int_{C_{2}} x y d s+\int_{C_{3}} x y d s=\frac{1}{2}+\frac{\sqrt{2}}{3}=\frac{3+2 \sqrt{2}}{6} .
$$

Note that we could have parametrized C_{3} by $\delta(t)=(t, t), 0 \leq t \leq 1$, which would give the same result:

$$
\int_{C_{3}} t^{2} \sqrt{2} d t=\frac{\sqrt{2}}{3}
$$

25.2 The line integral of a vector field

In physics, if a force of constant magnitude F acts to move an object a distance d along a line, then $W=F d$ is called the work done by the force. Slightly more generally, if an object moves along a vector \mathbf{d} in \mathbb{R}^{2} or \mathbb{R}^{3} in the presence of a constant vector force \mathbf{F}, then the work W done by F is the product of the component of \mathbf{F} in the direction of \mathbf{d} and the length of \mathbf{d}. That is,

$$
W=\left(\mathbf{F} \cdot \frac{\mathbf{d}}{|\mathbf{d}|}\right)|\mathbf{d}|=\mathbf{F} \cdot \mathbf{d}
$$

Now suppose $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a continuous vector field, $\varphi:[a, b] \rightarrow \mathbb{R}^{n}$ is a smooth parametrization of a curve C, and W is the work done by the force F in moving an object along the curve C from $\varphi(a)$ to $\varphi(b)$. If we divide $[a, b]$ into n subintervals of equal length Δt, then

$$
W \approx \sum_{i=0}^{n-1} F\left(\varphi\left(t_{i}\right)\right) \cdot\left(\varphi\left(t_{i+1}\right)-\varphi\left(t_{i}\right)\right)
$$

an approximation which should improve as n increases. In fact, we should have

$$
\begin{aligned}
W & =\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} F\left(\varphi\left(t_{i}\right)\right) \cdot\left(\varphi\left(t_{i+1}\right)-\varphi\left(t_{i}\right)\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} F\left(\varphi\left(t_{i}\right)\right) \cdot \frac{\varphi\left(t_{i+1}\right)-\varphi\left(t_{i}\right)}{\Delta t} \Delta t \\
& =\int_{a}^{b} F(\varphi(t)) \cdot \varphi^{\prime}(t) d t
\end{aligned}
$$

We call this integral the line integral of F along C, and denote it

$$
\int_{C} F \cdot d \mathbf{r}
$$

(the \mathbf{r} comes from thinking of the curve C as having vector equation $\mathbf{r}=\varphi(t)$). That is,

$$
\int_{C} F \cdot d \mathbf{r}=\int_{a}^{b} F(\varphi(t)) \cdot \varphi^{\prime}(t) d t
$$

Example We will evaluate $\int_{C} F \cdot d \mathbf{r}$ where C is the unit circle parametrized by $\varphi(t)=$ $(\cos (t), \sin (t)), 0 \leq t \leq 2 \pi$, and F is the vector field $F(x, y)=(-y, x)$. Then

$$
\int_{C} F \cdot d \mathbf{r}=\int_{0}^{2 \pi}(-\sin (t), \cos (t)) \cdot(-\sin (t), \cos (t)) d t=\int_{0}^{2 \pi} d t=2 \pi
$$

If we let $-C$ be C parametrized in the reverse direction by $\varphi(t)=(\sin (t), \cos (t))$, then

$$
\int_{-C} F \cdot d \mathbf{r}=\int_{0}^{2 \pi}(-\cos (t), \sin (t)) \cdot(\cos (t),-\sin (t)) d t=-\int_{0}^{2 \pi} d t=-2 \pi
$$

In general, if $-C$ is the curve C parametrized in the reverse direction, then

$$
\int_{-C} F \cdot d \mathbf{r}=-\int_{C} F \cdot d \mathbf{r}
$$

Notation: If

$$
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right), \ldots, f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

and

$$
\varphi(t)=\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)
$$

parametrizes a curve C for $a \leq t \leq b$, then

$$
\begin{aligned}
\int_{C} F \cdot d \mathbf{r}= & \int_{a}^{b}\left(f_{1}\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right), \ldots, f_{n}\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)\right) \\
& \quad \cdot\left(\frac{d x_{1}}{d t}, \frac{d x_{2}}{d t}, \ldots, \frac{d x_{n}}{d t}\right) d t \\
= & \int_{a}^{b}\left(\begin{array}{l}
f_{1}\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right) \frac{d x_{1}}{d t}+f_{2}\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right) \frac{d x_{2}}{d t}+\cdots \\
\\
\\
\left.\quad+f_{n}\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right) \frac{d x_{n}}{d t}\right) d t \\
= \\
\\
\quad \int_{C} f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1}+f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{2}+\cdots \\
\\
\quad+f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{n}
\end{array}\right.
\end{aligned}
$$

In particular, for $n=3$, if

$$
F(x, y, z)=(P(x, y, z), Q(x, y, z), R(x, y, z))=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}
$$

we may write

$$
\int_{C} F \cdot d \mathbf{r}=\int_{C} P d x+Q d y+R d z
$$

and, for $n=2$, if

$$
F(x, y)=(P(x, y), Q(x, y))=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}
$$

we may write

$$
\int_{C} F \cdot d \mathbf{r}=\int_{C} P d x+Q d y
$$

Example We will evaluate

$$
\int_{C} x^{2} y d x+3 x d y
$$

where C is the segment of the parabola $y=x^{2}$ from $(0,0)$ to $(2,4)$. We may parametrize C by $\varphi(t)=\left(t, t^{2}\right), 0 \leq t \leq 2$, so

$$
\begin{aligned}
\int_{C} x^{2} y d x+3 x d y & =\int_{0}^{2}\left(t^{4}, 3 t\right) \cdot(1,2 t) d t \\
& =\int_{0}^{2}\left(t^{4}+6 t^{2}\right) d t \\
& =\frac{32}{5}+16 \\
& =\frac{112}{5}
\end{aligned}
$$

Example We will evaluate

$$
\int_{C} x^{2} d z
$$

where C is the curve in \mathbb{R}^{3} parametrized by $\varphi(t)=(t, \cos (t), \sin (t)), 0 \leq t \leq 2 \pi$. Then $\varphi^{\prime}(t)=(1,-\sin (t), \cos (t))$, so

$$
\begin{aligned}
\int_{C} x^{2} d z & =\int_{0}^{2 \pi}\left(0,0, t^{2}\right) \cdot(1,-\sin (t), \cos (t)) d t \\
& =\int_{0}^{2 \pi} t^{2} \cos (t) d t \\
& =\left.t^{2} \sin (t)\right|_{0} ^{2 \pi}-\int_{0}^{2 \pi} 2 t \sin (t) d t \\
& =\left.2 t \cos (t)\right|_{0} ^{2 \pi}-\int_{0}^{2 \pi} 2 \cos (t) d t \\
& =4 \pi-\left.2 \sin (t)\right|_{0} ^{2 \pi} \\
& =4 \pi
\end{aligned}
$$

More on notation: Suppose $\varphi:[a, b] \rightarrow \mathbb{R}^{n}$ parametrizes a curve C and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a vector field. Let

$$
T(t)=\frac{\varphi^{\prime}(t)}{\left|\varphi^{\prime}(t)\right|}
$$

be the unit tangent vector to C at $\varphi(t)$. Then

$$
\int_{C} F \cdot d \mathbf{r}=\int_{a}^{b} F(\varphi(t)) \cdot \varphi^{\prime}(t) d t=\int_{a}^{b} F(\varphi(t)) \cdot T(t)\left|\varphi^{\prime}(t)\right| d t=\int_{C} F \cdot T d s
$$

The latter integral is a common notation for the line integral of a vector field F along a curve C.

