
Lecture 25: Line Integrals

25.1 The line integral of a scalar field

Suppose ϕ : [a, b] → R
n is a smooth parametrization of a curve C and f : Rn → R is a

continuous scalar field. Let

s =
∫ t

a

|ϕ′(u)|du.

Then s is the length of the piece of C extending from ϕ(a) to ϕ(t). Note that

ds

dt
= |ϕ′(t)|.

We now define ∫
C

f(x)ds =
∫ b

a

f(ϕ(t))
ds

dt
dt =

∫ b

a

f(ϕ(t))|ϕ′(t)|dt,

which we call the line, or path, integral of f along C. In particular, if n = 3 and ϕ(t) =
(x(t), y(t), z(t)), then

∫
C

f(x, y, z)ds =
∫ b

a

f(x(t), y(t), z(t))

√(
dx

dt

)2

+
(
dy

dt

)2

+
(
dz

dt

)2

dt;

if n = 2 and ϕ(t) = (x(t), y(t)), then

∫
C

f(x, y)ds =
∫ b

a

f(x(t), y(t))

√(
dx

dt

)2

+
(
dy

dt

)2

dt.

Geometrically, we may think of the latter integral as the area of a “fence” with base along
the curve C and height given by f(x, y).

Example Let C be the circular helix parametrized by

ϕ(t) = (cos(t), sin(t), t)

for 0 ≤ t ≤ 2π and let
f(x, y, z) = x2 + y2 + z2.

Then
|ϕ(t)| =

√
sin2(t) + cos2(t) + 1 =

√
2

and
f(ϕ(t)) = cos2(t) + sin2(t) + t2 = 1 + t2.
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Hence ∫
C

f(x, y, z)ds =
∫ 2π

0

(1 + t2)
√

2dt

=
√

2
(

2π +
t3

3

∣∣∣2π
0

)
=
√

2
(

2π +
8π3

3

)
= 2π

√
2
(

1 +
4π2

3

)
.

Example We will evaluate
∫
C
xyds where C is the triangle with vertices (0, 0), (1, 0)

and (1, 1). Let C1 be the line from (0, 0) to (1, 0), C2 the line from (1, 0) to (1, 1), and C3

the line from (1, 1) to (0, 0). Now α(t) = (t, 0), 0 ≤ t ≤ 1, parametrizes C1, β(t) = (1, t),
0 ≤ t ≤ 1, parametrizes C2, and γ(t) = (1− t, 1− t), 0 ≤ t ≤ 1, parametrizes C3, so∫

C1

xyds =
∫ 1

0

0dt = 0,

∫
C2

xyds =
∫ 1

0

tdt =
1
2
,

and ∫
C3

xyds =
∫ 1

0

(1− t)2
√

2dt = −
√

2(1− t)3

3

∣∣∣∣1
0

=
√

2
3
.

Thus ∫
C

xyds =
∫
C1

xyds+
∫
C2

xyds+
∫
C3

xyds =
1
2

+
√

2
3

=
3 + 2

√
2

6
.

Note that we could have parametrized C3 by δ(t) = (t, t), 0 ≤ t ≤ 1, which would give the
same result: ∫

C3

t2
√

2dt =
√

2
3
.

25.2 The line integral of a vector field

In physics, if a force of constant magnitude F acts to move an object a distance d along
a line, then W = Fd is called the work done by the force. Slightly more generally, if an
object moves along a vector d in R2 or R3 in the presence of a constant vector force F,
then the work W done by F is the product of the component of F in the direction of d
and the length of d. That is,

W =
(

F · d
|d|

)
|d| = F · d.
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Now suppose F : Rn → R
n is a continuous vector field, ϕ : [a, b] → R

n is a smooth
parametrization of a curve C, and W is the work done by the force F in moving an object
along the curve C from ϕ(a) to ϕ(b). If we divide [a, b] into n subintervals of equal length
∆t, then

W ≈
n−1∑
i=0

F (ϕ(ti)) · (ϕ(ti+1)− ϕ(ti)),

an approximation which should improve as n increases. In fact, we should have

W = lim
n→∞

n−1∑
i=0

F (ϕ(ti)) · (ϕ(ti+1)− ϕ(ti))

= lim
n→∞

n−1∑
i=0

F (ϕ(ti)) ·
ϕ(ti+1)− ϕ(ti)

∆t
∆t

=
∫ b

a

F (ϕ(t)) · ϕ′(t)dt.

We call this integral the line integral of F along C, and denote it∫
C

F · dr

(the r comes from thinking of the curve C as having vector equation r = ϕ(t)). That is,∫
C

F · dr =
∫ b

a

F (ϕ(t)) · ϕ′(t)dt.

Example We will evaluate
∫
C
F · dr where C is the unit circle parametrized by ϕ(t) =

(cos(t), sin(t)), 0 ≤ t ≤ 2π, and F is the vector field F (x, y) = (−y, x). Then∫
C

F · dr =
∫ 2π

0

(− sin(t), cos(t)) · (− sin(t), cos(t))dt =
∫ 2π

0

dt = 2π.

If we let −C be C parametrized in the reverse direction by ϕ(t) = (sin(t), cos(t)), then∫
−C

F · dr =
∫ 2π

0

(− cos(t), sin(t)) · (cos(t),− sin(t))dt = −
∫ 2π

0

dt = −2π.

In general, if −C is the curve C parametrized in the reverse direction, then∫
−C

F · dr = −
∫
C

F · dr.
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Notation: If

F (x1, x2, . . . , xn) = (f1(x1, x2, . . . , xn)), . . . , fn(x1, x2, . . . , xn)

and
ϕ(t) = (x1(t), x2(t), . . . , xn(t))

parametrizes a curve C for a ≤ t ≤ b, then

∫
C

F · dr =
∫ b

a

(f1(x1(t), x2(t), . . . , xn(t)), . . . , fn(x1(t), x2(t), . . . , xn(t)))

·
(
dx1

dt
,
dx2

dt
, . . . ,

dxn
dt

)
dt

=
∫ b

a

(
f1(x1(t), x2(t), . . . , xn(t))

dx1

dt
+ f2(x1(t), x2(t), . . . , xn(t))

dx2

dt
+ · · ·

+ fn(x1(t), x2(t), . . . , xn(t))
dxn
dt

)
dt

=
∫
C

f1(x1, x2, . . . , xn)dx1 + f2(x1, x2, . . . , xn)dx2 + · · ·

+ fn(x1, x2, . . . , xn)dxn.

In particular, for n = 3, if

F (x, y, z) = (P (x, y, z), Q(x, y, z), R(x, y, z)) = P (x, y, z)i +Q(x, y, z)j +R(x, y, z)k,

we may write ∫
C

F · dr =
∫
C

Pdx+Qdy +Rdz,

and, for n = 2, if

F (x, y) = (P (x, y), Q(x, y)) = P (x, y)i +Q(x, y)j,

we may write ∫
C

F · dr =
∫
C

Pdx+Qdy.

Example We will evaluate ∫
C

x2ydx+ 3xdy,
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where C is the segment of the parabola y = x2 from (0, 0) to (2, 4). We may parametrize
C by ϕ(t) = (t, t2), 0 ≤ t ≤ 2, so∫

C

x2ydx+ 3xdy =
∫ 2

0

(t4, 3t) · (1, 2t)dt

=
∫ 2

0

(t4 + 6t2)dt

=
32
5

+ 16

=
112
5
.

Example We will evaluate ∫
C

x2dz,

where C is the curve in R3 parametrized by ϕ(t) = (t, cos(t), sin(t)), 0 ≤ t ≤ 2π. Then
ϕ′(t) = (1,− sin(t), cos(t)), so∫

C

x2dz =
∫ 2π

0

(0, 0, t2) · (1,− sin(t), cos(t))dt

=
∫ 2π

0

t2 cos(t)dt

= t2 sin(t)
∣∣∣2π
0
−
∫ 2π

0

2t sin(t)dt

= 2t cos(t)
∣∣∣2π
0
−
∫ 2π

0

2 cos(t)dt

= 4π − 2 sin(t)
∣∣∣2π
0

= 4π.

More on notation: Suppose ϕ : [a, b]→ R
n parametrizes a curve C and F : Rn → R

n is a
vector field. Let

T (t) =
ϕ′(t)
|ϕ′(t)|

be the unit tangent vector to C at ϕ(t). Then∫
C

F · dr =
∫ b

a

F (ϕ(t)) · ϕ′(t)dt =
∫ b

a

F (ϕ(t)) · T (t)|ϕ′(t)|dt =
∫
C

F · Tds.

The latter integral is a common notation for the line integral of a vector field F along a
curve C.


