## Lecture 24: Vector Fields

## 24.1 Vector fields

**Definition** A function  $F : \mathbb{R}^n \to \mathbb{R}^n$  is called a *vector field*.

If  $F : \mathbb{R}^n \to \mathbb{R}^n$  is a vector field, then, for any **x** in  $\mathbb{R}^n$ ,

$$F(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_n(\mathbf{x}))$$

for some functions  $f_k : \mathbb{R}^n \to \mathbb{R}$ , k = 1, 2, ..., n, the component, or coordinate, functions of f. In contrast to the vector field F, we call the functions  $f_1, f_2, ..., f_n$  scalar fields.

**Definition** We say a vector field  $F : \mathbb{R}^n \to \mathbb{R}^n$  is *continuous* at a point **a** if

$$\lim_{\mathbf{x}\to\mathbf{a}}F(\mathbf{x})=F(\mathbf{a}).$$

**Proposition** Suppose a vector field  $F : \mathbb{R}^n \to \mathbb{R}^n$  has coordinate functions  $f_1, f_2, \ldots, f_n$ . Then F is continuous at a if and only if  $f_k$  is continuous at  $\mathbf{a}$  for  $k = 1, 2, \ldots, n$ .

**Example** The vector field

$$F(x,y,z) = -\frac{1}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}(x,y,z)$$
  
=  $-\frac{x}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}\mathbf{i} - \frac{y}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}\mathbf{j} - \frac{z}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}\mathbf{k}$ 

is continuous at every point in  $\mathbb{R}^3$  except (0,0,0). Note that for any  $(x,y,z) \neq (0,0,0)$ ,

$$|F(x,y,z)| = \frac{|(x,y,z)|}{|(x,y,z)|^3} = \frac{1}{|(x,y,z)|^2}.$$

Hence we may picture F(x, y, z) as a vector pointing from (x, y, z) towards the origin with length equal to the reciprocal of the square of the distance from (x, y, z) to the origin. Multiplied by the appropriate constants, this vector field could represent the gravitational force field of a point mass at the origin.

**Definition** Suppose  $F : \mathbb{R}^n \to \mathbb{R}^n$  is a vector field. If there exists a scalar field  $f : \mathbb{R}^n \to \mathbb{R}$  such that  $F(\mathbf{x}) = \nabla f(\mathbf{x})$  for all  $\mathbf{x}$  in the domain of F, then we call f a potential function for F and we say that F is a conservative vector field.

**Example** Let  $f : \mathbb{R}^3 \to \mathbb{R}$  be defined by

$$f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}.$$

Then

$$\nabla f(x, y, z) = -\frac{1}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}(x, y, z).$$

Hence the vector field

$$F(x, y, z) = -\frac{1}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}(x, y, z)$$

of the previous example is a conservative vector field with potential f.

## 24.2 Picturing a vector field

**Example** The following plot shows the result of plotting a scaled version of vectors from the vector field

$$F(x,y) = -\frac{1}{x^2 + y^2}(x,y) = -\frac{x}{x^2 + y^2}\mathbf{i} - \frac{y}{x^2 + y^2}\mathbf{j}$$

on a grid in the xy-plane.

| •        | • | ٩    | ١ | 1    | . 7      | ۲                | * | * | •             |
|----------|---|------|---|------|----------|------------------|---|---|---------------|
| •        | ٩ | ٩    | ٩ | •    | <b>F</b> | *                | • | * | •             |
| •        | • | •    | ٩ | 1    | •        | *                | • | • | •             |
| •        | • | •    | • | 0.5  | •        | *                | - | - | -             |
| •        | • | •    | • |      | *        | •                | - | - | 4             |
| ►<br>- 1 |   | -0.5 |   |      |          | 0.5              |   |   | <b>⊸</b><br>1 |
| -1<br>-  | - | -    | √ | *    | X        | ▼                |   | - | 1             |
| -        | • | •    | • | -0.5 |          | •                | • | • | -             |
| -        | • | •    | 4 | 4    | •        | •                | • | * | •             |
| •        | • | 4    | 4 | 4    |          | *                | • | • | •             |
|          |   |      |   |      |          |                  |   |   |               |
| •        |   | 4    | 4 | -1   | i k      | $\frac{1}{x^2+}$ | • | • | •             |

Note that this is the gradient vector field of the potential

$$f(x,y) = -\frac{1}{2}\ln(x^2 + y^2).$$

**Example** The following plot shows the result of plotting a scaled version of vectors from the vector field

$$F(x,y) = \frac{1}{\sqrt{x^2 + y^2}}(-y,x)$$

on a grid in the xy-plane. Note that

$$|F(x,y)| = \frac{1}{\sqrt{x^2 + y^2}} |(-y,x)| = \frac{\sqrt{y^2 + x^2}}{\sqrt{x^2 + y^2}} = 1,$$

which explains why the vectors are all the same length, and

$$(x,y) \cdot F(x,y) = \frac{-yx + xy}{\sqrt{x^2 + y^2}} = 0,$$

showing that F(x, y) is orthogonal to (x, y), or, in other words, F(x, y) is tangent to the circle centered at the origin passing through (x, y).

