## Lecture 23: Cylindrical and Spherical Coordinates

### 23.1 Cylindrical coordinates

If $P$ is a point in 3 -space with Cartesian coordinates $(x, y, z)$ and $(r, \theta)$ are the polar coordinates of $(x, y)$, then $(r, \theta, z)$ are the cylindrical coordinates of $P$. If $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is continuous on a region in space described by $D$ in Cartesian coordinates and by $T$ in cylindrical coordinates, then

$$
\iiint_{D} f(x, y, z) d x d y d z=\iiint_{T} f(r \cos (\theta), r \sin (\theta), z) r d r d \theta d z
$$

Example If $V$ is the volume of the region $D$ bounded by the two surfaces $z=x^{2}+y^{2}$ and $z=2-x^{2}-y^{2}$, then, changing to cylindrical coordinates,

$$
V=\iiint_{D} d x d y d z=\int_{0}^{1} \int_{0}^{2 \pi} \int_{r^{2}}^{2-r^{2}} r d z d \theta d r=\int_{0}^{1} \int_{0}^{2 \pi} 2\left(r-r^{3}\right) d \theta d r=\pi
$$

where the evaluation of the final double integral follows as in a previous example.

### 23.2 Spherical coordinates

We may describe a point $P$ in 3 -space using coordinates $(\rho, \theta, \phi)$ where $\rho$ is the distance from $P$ to the origin, $\theta$ is the polar coordinate angle for the projection of $P$ onto the horizontal plane, and $\phi$ is the angle between the line from the origin to $P$ and the vertical axis. Note that we may describe all of 3 -space with $\rho \geq 0,0 \leq \theta<2 \pi$, and $0 \leq \rho \leq \pi$. We call $(\rho, \theta, \phi)$ the spherical coordinates of $P$.

If $P$ has Cartesian coordinates $(x, y, z)$, then

$$
\begin{aligned}
\rho & =\sqrt{x^{2}+y^{2}+z^{2}} \\
\tan (\theta) & =\frac{y}{x} \\
\cos (\phi) & =\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}
\end{aligned}
$$

Conversely, if $P$ has spherical coordinates $(\rho, \theta, \phi)$, then

$$
\begin{aligned}
& x=\rho \sin (\phi) \cos (\theta) \\
& y=\rho \sin (\phi) \sin (\theta) \\
& z=\rho \cos (\phi) .
\end{aligned}
$$

Example A point $P$ with Cartesian coordinates $(2,-2,1)$ has spherical coordinates

$$
\begin{aligned}
& \rho=3 \\
& \theta=\frac{7 \pi}{4} \\
& \phi=\cos ^{-1}\left(\frac{1}{3}\right)=1.2310
\end{aligned}
$$

where the final result is rounded to 4 decimal places.
Example A point $P$ with spherical coordinates $\left(4, \frac{\pi}{3}, \frac{3 \pi}{4}\right)$ has Cartesian coordinates

$$
\begin{aligned}
& x=\sqrt{2} \\
& y=\sqrt{6} \\
& z=-2 \sqrt{2} .
\end{aligned}
$$

Now consider a spherical "rectangle" $S$ of dimensions $\Delta \rho, \Delta \theta$, and $\Delta \phi$. That is, for some fixed $\rho, \theta$, and $\phi$, let

$$
S=\{(\alpha, \beta, \gamma): \rho \leq \alpha \leq \rho+\Delta \rho, \theta \leq \beta \leq \theta+\Delta \theta, \phi \leq \gamma \leq \phi+\Delta \phi\}
$$

If $V$ is the volume of $S$, then

$$
V \approx \Delta \rho \times \rho \Delta \phi \times \rho \sin (\phi) \Delta \theta=\rho^{2} \sin (\phi) \Delta \rho \Delta \theta \Delta \phi
$$

It follows that if $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is continuous on a region in 3 -space, described by $D$ in Cartesian coordinates and by $T$ in spherical coordinates, then

$$
\begin{aligned}
& \iiint_{D} f(x, y, z) d x d y d z= \\
& \qquad \iiint_{T} f(\rho \sin (\phi) \cos (\theta), \rho \sin (\phi) \sin (\theta), \rho \cos (\phi)) \rho^{2} \sin (\phi) d \rho d \theta d \rho
\end{aligned}
$$

Example Let $V$ be the volume of the region $D$ bounded by the sphere of radius $r$ centered at the origin and the cone with vertex at the origin whose sides make an angle $\alpha$ with the positive $z$-axis. Then

$$
\begin{aligned}
V & =\iiint_{D} d V \\
& =\int_{0}^{\alpha} \int_{0}^{r} \int_{0}^{2 \pi} \rho^{2} \sin (\phi) d \theta d \rho d \phi
\end{aligned}
$$

$$
\begin{aligned}
& =2 \pi \int_{0}^{\alpha} \int_{0}^{r} \rho^{2} \sin (\phi) d \rho d \phi \\
& =\left.2 \pi \int_{0}^{\alpha} \sin (\phi) \frac{\rho^{3}}{3}\right|_{0} ^{r} d \phi \\
& =\frac{2 \pi r^{3}}{3} \int_{0}^{\alpha} \sin (\phi) d \phi \\
& =\frac{2 \pi r^{3}}{3}\left(-\left.\cos (\phi)\right|_{0} ^{\alpha}\right. \\
& =\frac{2 \pi r^{3}}{3}(1-\cos (\alpha)) .
\end{aligned}
$$

Note that if $\alpha=\pi$, then $D$ is the entire sphere of radius $r$, and we have the formula for the volume of a sphere of a radius $r$ :

$$
V=\frac{4}{3} \pi r^{3}
$$



Region bound by a sphere of radius 1 and a cone with an angle of $\frac{\pi}{6}$ with the $z$-axis

