Lecture 21: Polar Coordinates

21.1 Polar coordinates for the plane

We may describe a point P, other than the origin, in the plane by specifying the distance r from P to the origin and the angle θ between the line from the origin to P and the horizontal axis (measured in the counterclockwise direction). If P has Cartesian coordinates (x, y), then

$$
r=\sqrt{x^{2}+y^{2}}
$$

and, if $x \neq 0$,

$$
\tan (\theta)=\frac{y}{x} .
$$

Conversely, if P has polar coordinates (r, θ), then

$$
x=r \cos (\theta)
$$

and

$$
y=r \sin (\theta)
$$

Example If P has Cartesian coordinates $(2,2)$, then P has polar coordinates

$$
r=2 \sqrt{2}
$$

and

$$
\theta=\frac{\pi}{4}
$$

Note that we could also use

$$
\theta=\frac{9 \pi}{4} .
$$

Example If P has polar coordinates $\left(4, \frac{2 \pi}{3}\right)$, then P has Cartesian coordinates

$$
x=-2
$$

and

$$
y=2 \sqrt{3}
$$

Example Let

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 4\right\}
$$

In polar coordinates, we have

$$
D=\{(r, \theta): r \leq 2,0 \leq \theta \leq 2 \pi\}
$$

21.2 Double integrals in polar coordinates

Note: If, working in polar coordinates, A is the area of the sector

$$
S=\{(s, \alpha): r \leq s \leq r+\Delta r, \theta \leq \alpha \leq \theta+\Delta \theta\}
$$

then

$$
A \approx r \Delta \theta \Delta r
$$

not $\Delta r \Delta \theta$ (see the figure below).

Area of a sector of an annulus is approximately $r \Delta \theta \Delta r$

Because of this, if f is continuous on a region in the plane, described by D in Cartesian coordinates and by T in polar coordinates, then

$$
\iint_{D} f(x, y) d x d y=\iint_{T} f(r \cos (\theta), r \sin (\theta)) r d r d \theta
$$

Example If V is the volume of the region beneath the surface $z=16-x^{2}-y^{2}$ and above the $x y$-plane, then

$$
\begin{aligned}
V & =\int_{-4}^{4} \int_{-\sqrt{16-x^{2}}}^{\sqrt{16-x^{2}}}\left(16-x^{2}-y^{2}\right) d y d x \\
& =\int_{0}^{2 \pi} \int_{0}^{4}\left(16-r^{2}\right) r d r d \theta \\
& =\left.\int_{0}^{2 \pi}\left(8 r^{2}-\frac{1}{4} r^{4}\right)\right|_{0} ^{4} d \theta \\
& =\int_{0}^{2 \pi}(128-64) d \theta \\
& =\left.64 \theta\right|_{0} ^{2 \pi} \\
& =128 \pi
\end{aligned}
$$

Example If $D=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 4,0 \leq x \leq 2,0 \leq y \leq 2\right\}$, then

$$
\begin{aligned}
\iint_{D} e^{-\sqrt{x^{2}+y^{2}}} d A & =\int_{1}^{2} \int_{0}^{\frac{\pi}{2}} r e^{-r} d \theta d r \\
& =\frac{\pi}{2} \int_{1}^{2} r e^{-r} d r \\
& =\frac{\pi}{2}\left(-\left.r e^{-r}\right|_{1} ^{2}+\int_{1}^{2} e^{-r} d r\right) \\
& =\frac{\pi}{2}\left(-2 e^{-2}+e^{-1}-\left.e^{-r}\right|_{1} ^{2}\right) \\
& =\frac{\pi}{2}\left(2 e^{-1}-3 e^{-2}\right)
\end{aligned}
$$

Example Let

$$
I=\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} d x
$$

Then

$$
I^{2}=\left(\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} d x\right)\left(\int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2}} d y\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)} d x d y
$$

Changing to polar coordinates, we have

$$
\begin{aligned}
I^{2} & =\int_{0}^{\infty} \int_{0}^{2 \pi} r e^{-\frac{r^{2}}{2}} d \theta d r \\
& =2 \pi \int_{0}^{\infty} r e^{-\frac{r^{2}}{2}} d r \\
& =2 \pi \lim _{b \rightarrow \infty} \int_{0}^{b} r e^{-\frac{r^{2}}{2}} d r \\
& =-\left.2 \pi \lim _{b \rightarrow \infty} e^{-\frac{r^{2}}{2}}\right|_{0} ^{b} \\
& =-2 \pi \lim _{b \rightarrow \infty}\left(e^{-\frac{b^{2}}{2}}-1\right) \\
& =2 \pi
\end{aligned}
$$

Hence

$$
\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} d x=\sqrt{2 \pi}
$$

