Lecture 19: Iterated Integrals

19.1 Another look at volume

Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous on the closed rectangle $R=[a, b] \times[c, d]$ with $f(x, y) \geq 0$ for all (x, y) in R. Let V be the volume of the region

$$
S=\{(x, y, z): a \leq x \leq b, c \leq y \leq d, 0 \leq z \leq f(x, y)\}
$$

Then we know that

$$
V=\iint_{R} f(x, y) d A
$$

For $a \leq c \leq b$, let

$$
A(c)=\int_{c}^{d} f(c, y) d y
$$

Then $A(c)$ is the area of a slice of S parallel to the $y z$-plane, namely, the intersection of the plane $x=c$ with S. Thus if we divide $[a, b]$ into n intervals of equal length $\Delta x=\frac{b-a}{n}$ and choose points $c_{1}, c_{2}, \ldots, c_{n}$ with c_{i} in the i th interval, we will have

$$
V \approx \sum_{i=1}^{n} A\left(c_{i}\right) \Delta x
$$

and

A slice of the region under the graph of $y=16-x^{2}-y^{2}$

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(c_{i}\right) \Delta x=\int_{a}^{b} A(x) d x=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

We call the latter integral an iterated integral.
Example Let

$$
S=\left\{(x, y, z): 0 \leq x \leq 1,0 \leq y \leq 2,0 \leq 16-x^{2}-y^{2}\right\} .
$$

If V is the volume of S, then

$$
\begin{aligned}
V & =\int_{0}^{1} \int_{0}^{2}\left(16-x^{2}-y^{2}\right) d y d x \\
& =\left.\int_{0}^{1}\left(16 y-x^{2} y-\frac{1}{3} y^{3}\right)\right|_{0} ^{2} d x \\
& =\int_{0}^{1}\left(32-2 x^{2}-\frac{8}{3}\right) d x \\
& =\int_{0}^{2}\left(\frac{88}{3}-2 x^{2}\right) d x \\
& =\left.\left(\frac{88}{3} x-\frac{2}{3} x^{3}\right)\right|_{0} ^{1} \\
& =\frac{88}{3}-\frac{2}{3} \\
& =\frac{86}{3}
\end{aligned}
$$

Note that since we also know that

$$
V=\iint_{R}\left(16-x^{2}-y^{2}\right) d A
$$

we must have

$$
\iint_{R}\left(16-x^{2}-y^{2}\right) d A=\int_{0}^{1} \int_{0}^{2}\left(16-x^{2}-y^{2}\right) d y d x
$$

19.2 Fubini's theorem

Fubini's Theorem If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous on $R=[a, b] \times[c, d]$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

Example If $R=[0,1] \times[-1,1]$, then

$$
\begin{aligned}
\iint_{R} x e^{x y} d A & =\int_{-1}^{1} \int_{0}^{1} x e^{x y} d x d y \\
& =\int_{0}^{1} \int_{-1}^{1} x e^{x y} d y d x \\
& =\left.\int_{0}^{1} e^{x y}\right|_{-1} ^{1} d x \\
& =\int_{0}^{1}\left(e^{x}-e^{-x}\right) d x \\
& =\left.e^{x}\right|_{0} ^{1}+\left.e^{-x}\right|_{0} ^{1} \\
& =(e-1)+\left(e^{-1}-1\right) \\
& =e+\frac{1}{e}-2
\end{aligned}
$$

Note that the integration could have been done in either order, but the order we chose was a little simpler (avoiding an integration by parts).

