Lecture 18: Multiple Integrals

18.1 Cartesian products

Notation: If A and B are sets, then we let

$$
A \times B=\{(a, b): a \text { is in } A \text { and } b \text { is in } B\} .
$$

We call $A \times B$ the Cartesian product of A and B. In particular, for closed intervals $[a, b]$ and $[c, d]$,

$$
[a, b] \times[c, d]=\{(x, y): a \leq x \leq b, c \leq y \leq d\}
$$

is a closed rectangle in \mathbb{R}^{2}. If $[e, f]$ is another closed interval, then

$$
[a, b] \times[c, d] \times[e, f]=\{(x, y, z): a \leq x \leq b, c \leq y \leq d, e \leq z \leq d\}
$$

is a closed box in \mathbb{R}^{3}.

18.2 Multiple integrals

Recall: Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. To define the definite integral of f on a closed interval $[a, b]$, we first divide $[a, b]$ in to n intervals of equal length $\Delta x=\frac{b-a}{n}$. We then choose points $c_{1}, c_{2}, \ldots, c_{n}$, with c_{i} in the i th interval. Then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

a limit which is guaranteed to exist by the continuity of f.
Now suppose $f: R^{n} \rightarrow \mathbb{R}$ is continuous on an n-dimensional rectangle

$$
R=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right] .
$$

If we divide each interval $\left[a_{i}, b_{i}\right]$ into m_{i} intervals of equal length

$$
\Delta x_{i}=\frac{b_{i}-a_{i}}{m_{i}}
$$

and let $c_{i j}$ be a point in the the j th interval, then we define

$$
\int \cdots \int_{R} f\left(x_{1}, x_{2}, \ldots, x_{n}\right) d V=\lim _{m_{n} \rightarrow \infty, \ldots, m_{1} \rightarrow \infty} \sum_{i_{n}=1}^{m_{n}} \cdots \sum_{i_{1}=1}^{m_{1}} f\left(c_{1 i_{1}}, \ldots, c_{n i_{n}}\right) \Delta x_{1} \cdots \Delta x_{n}
$$

If $n=2$, we will use $d A$ instead of $d V$.

18.3 Double integrals

If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous, $R=[a, b] \times[c, d]$, and $f(x, y) \geq 0$ for all (x, y) in R, then we may interpret

$$
\iint_{R} f(x, y) d A
$$

as the volume of the region

$$
S=\{(x, y, z): a \leq x \leq b, c \leq y \leq d, 0 \leq z \leq f(x, y)\}
$$

Graph of $y=16-x^{2}-y^{2}$ over $[0,1] \times[0,2]$

Example Suppose $f(x, y)=16-x^{2}-y^{2}$ and $R=[0,1] \times[0,2]$. If we divide $[0,1]$ into 2 intervals and $[0,2]$ into 4 intervals and evaluate $f(x, y)$ at the lower left-hand corner of each of the 8 resulting rectangles, then we have the approximation

$$
\begin{aligned}
\iint_{R} f(x, y) d A \approx & f(0,0) \times \frac{1}{4}+f\left(\frac{1}{2}, 0\right) \times \frac{1}{4}+f\left(0, \frac{1}{2}\right) \times \frac{1}{4}+f\left(\frac{1}{2}, \frac{1}{2}\right) \times \frac{1}{4} \\
& +f(0,1) \times \frac{1}{4}+f\left(\frac{1}{2}, 1\right) \times \frac{1}{4}+f\left(0, \frac{3}{2}\right) \times \frac{1}{4}+f\left(\frac{1}{2}, \frac{3}{2}\right) \times \frac{1}{4} \\
= & 4+\frac{63}{16}+\frac{63}{16}+\frac{31}{8}+\frac{15}{4}+\frac{59}{16}+\frac{55}{16}+\frac{54}{16} \\
= & 30
\end{aligned}
$$

We shall see that, exactly,

$$
\iint_{R}\left(16-x^{2}-y^{2}\right) d A=\frac{86}{3}
$$

the volume of the region under the graph of f and above the rectangle R in the $x y$-plane.

