
Lecture 17: Constrained Extrema

17.1 Lagrange multipliers

Suppose f : Rn → R and g : Rn → R are differentiable and we are looking for the extreme
values of f restricted to the level set S = {x : g(x) = 0}. Note that if f has an extreme
value at a on S, then f(a) must be an extreme value of f along any curve passing through
a. Hence if ϕ : R → R

n parametrizes a curve which lies in S with ϕ(t0) = a, then the
function h(t) = f(ϕ(t)) has a local extremum at t0. Thus

0 = h′(t0) = ∇f(ϕ(t0)) · ϕ′(t0) = ∇f(a) · ϕ′(t0).

Now since ϕ′(t0) is tangent to S and ∇f(a) is orthogonal to ϕ′(t0) for any such curve, it
follows that ∇f(a) is orthogonal to S. But we already know that ∇g(a) is orthogonal to
S, and so ∇f(a) and ∇g(a) must be parallel. That is, there must exist a scalar λ such
that

∇f(a) = λ∇g(a).

Hence to find the extreme values of f restricted to S, we need consider only those points
a for which both

g(a) = 0

and
∇f(a) = λ∇g(a).

We call the scalar λ a Lagrange multiplier and this method for finding extreme values of a
function f subject to a constraining equation g(x) = 0 the method of Lagrange multipliers.

Example We look for the extreme values of

f(x, y) = x2 + y2 − x− y + 1

on the set
S = {(x, y) : x2 + y2 = 1}.

Let g(x, y) = x2 + y2 − 1. Then

∇f(x, y) = (2x− 1, 2y − 1)

and
∇g(x, y) = (2x, 2y).

Thus we need to solve the equations

(2x− 1, 2y − 1) = λ(2x, 2y)
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and
x2 + y2 = 1.

That is, we need to solve
2x− 1 = 2λx
2y − 1 = 2λy

x2 + y2 = 1.

Note first that λ 6= 1. Then from the first equation we have

x =
1

2(1− λ)

and from the second
y =

1
2(1− λ)

.

Hence x = y. From the last equation, it now follows that

2x2 = 1,

that is,

x = − 1√
2

or x =
1√
2
.

Thus we have two points to consider for extreme values:
(

1√
2
, 1√

2

)
and

(
− 1√

2
,− 1√

2

)
.

Since S is closed and bounded, we know from the Extreme Value Theorem that one of
these values is an absolute maximum of f on S and the other an absolute minimum of f
on S. Now

f

(
1√
2
,

1√
2

)
= 2−

√
2

and

f

(
− 1√

2
,− 1√

2

)
= 2 +

√
2,

so f has an absolute maximum value of 2 +
√

2 at
(
− 1√

2
,− 1√

2

)
and an absolute minimum

value of 2−
√

2 at
(

1√
2
, 1√

2

)
.

Example Suppose a farmer wishes to construct a rectangular storage bin, without a
top, which will hold the largest volume using 300 square meters of material. If we let x
and y be the dimensions of the base and z the height of the bin, then we want to maximize
the volume

V (x, y, z) = xyz

on the region D = {(x, y, z) : x > 0, y > 0, z > 0} subject to the constraint

xy + 2xz + 2yz = 300.
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If we let g(x, y, z) = xy + 2xz + 2yz − 300, then we our problem is to maximize V subject
to g(x, y, z) = 0. Now

∇V (x, y, z) = (yz, xz, xy)

and
∇g(x, y, z) = (y + 2z, x+ 2z, 2x+ 2y),

so we need to solve the equations

yz = λ(y + 2z)
xz = λ(x+ 2z)
xy = λ(2x+ 2y)
xy + 2xz + 2yz = 300.

Now the first two equations imply that

λ =
yz

y + 2z

and
λ =

xz

x+ 2z
,

and so
yz

y + 2z
=

xz

x+ 2z
,

from which it follows that
xyz + 2yz2 = xyz + 2xz2.

Hence 2yz2 = 2xz2, and so x = y. Substituting this into the third equation yields x2 = 4λx,
or x = 4λ. It follows that y = 4λ and, from the first equation,

4λz = 4λ2 + 2λz,

from which we obtain z = 2λ. Putting these results into the final equation gives us

16λ2 + 16λ2 + 16λ2 = 300,

and so

λ =

√
300
48

=

√
25
4

= ±5
2
.

Since x > 0, y > 0, and z > 0, we now have x = 10, y = 10, and z = 5. Unfortunately, in
this case our constraining surface is not bounded, nor do we even have a test to determine
if we have found the location of a local extreme value. However, our geometric intuition
tells us that there should be a maximum, and we conclude that a bin with dimensions 10
meters by 10 meters by 5 meters will maximize volume for the given surface area of 300
square meters.
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17.2 Two constraints

Now suppose f : Rn → R, g : Rn → R, and h : Rn → R are all differentiable and we
wish to find the extreme values of f subject to the constraints g(x) = 0 and h(x) = 0. It
follows, as above, that if f has an extremum at a, then ∇f(a) is orthogonal to any vector
tangent to the intersection of the level sets determined by the conditions g(x) = 0 and
h(x) = 0. The set of vectors orthogonal to the intersection of these two level sets forms
a plane, so it follows that ∇f(a) lies in the plane spanned by the two vectors ∇g(a) and
∇h(a) (provided neither of these vectors is 0 and they are not parallel). Hence there must
exist scalars λ and µ, again called Lagrange multipliers, such that

∇f(a) = λ∇g(a) + µ∇h(a).

Thus to look for possible extreme values of f , we solve the equations

∇f(x) = λ∇g(x) + µ∇h(x)
g(x) = 0
h(x) = 0.

Example Suppose the unit sphere centered at the origin in R3 is heated so that its
temperature at a point is given by

T (x, y, z) = 80 + 50(x+ z).

Suppose we wish to find the extreme values of T along the intersection D of the sphere
with the plane x+ y+ z = 1 (see the picture below). That is, we wish to find the extrema
of T subject to the constraints

x2 + y2 + z2 = 1

and
x+ y + z = 1.

Let g(x, y, z) = x2 + y2 + z2 − 1 and h(x, y, z) = x+ y + z − 1. Now

∇T (x, y, z) = (50, 0, 50),

∇g(x, y, z) = (2x, 2y, 2z),

and
∇h(x, y, z) = (1, 1, 1).

So we need to solve the equations

(50, 0, 50) = λ(2x, 2y, 2z) + µ(1, 1, 1),
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Intersection of x2 + y2 + z2 = 1 and x+ y + z = 1

x2 + y2 + z2 = 1

and
x+ y + z = 1.

That is, we need to solve
50 = 2λx+ µ

0 = 2λy + µ

50 = 2λz + µ

x2 + y2 + z2 = 1
x+ y + z = 1.

Note first that we cannot have λ = 0. From the first and third equations we obtain

2λx+ µ = 2λz + µ,

from which it follows that x = z. It now follows from the last equation that

y = 1− 2x.

Substituting into the fourth equation, we have

x2 + (1− 2x)2 + x2 = 1,

that is,
6x2 − 4x = 0.
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Hence x = 0 or x = 2
3 . When x = 0, z = 0 and y = 1; when x = 2

3 , z = 2
3 and y = − 1

3 .
Since D is closed and bounded, we evaluate T at these two points, namely,

T (0, 1, 0) = 80

and

T

(
2
3
,−1

3
,

2
3

)
= 80 +

200
3

=
440
3
,

and see that T has an absolute minimum value of 80 at (0, 1, 0) and an absolute maximum
value of 440

3 at
(

2
3 ,−

1
3 ,

2
3

)
.


