Lecture 17: Constrained Extrema

17.1 Lagrange multipliers

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are differentiable and we are looking for the extreme values of f restricted to the level set $S=\{\mathbf{x}: g(\mathbf{x})=0\}$. Note that if f has an extreme value at a on S, then $f(\mathbf{a})$ must be an extreme value of f along any curve passing through a. Hence if $\varphi: \mathbb{R} \rightarrow \mathbb{R}^{n}$ parametrizes a curve which lies in S with $\varphi\left(t_{0}\right)=\mathbf{a}$, then the function $h(t)=f(\varphi(t))$ has a local extremum at t_{0}. Thus

$$
0=h^{\prime}\left(t_{0}\right)=\nabla f\left(\varphi\left(t_{0}\right)\right) \cdot \varphi^{\prime}\left(t_{0}\right)=\nabla f(\mathbf{a}) \cdot \varphi^{\prime}\left(t_{0}\right)
$$

Now since $\varphi^{\prime}\left(t_{0}\right)$ is tangent to S and $\nabla f(\mathbf{a})$ is orthogonal to $\varphi^{\prime}\left(t_{0}\right)$ for any such curve, it follows that $\nabla f(\mathbf{a})$ is orthogonal to S. But we already know that $\nabla g(\mathbf{a})$ is orthogonal to S, and so $\nabla f(\mathbf{a})$ and $\nabla g(\mathbf{a})$ must be parallel. That is, there must exist a scalar λ such that

$$
\nabla f(\mathbf{a})=\lambda \nabla g(\mathbf{a})
$$

Hence to find the extreme values of f restricted to S, we need consider only those points a for which both

$$
g(\mathbf{a})=0
$$

and

$$
\nabla f(\mathbf{a})=\lambda \nabla g(\mathbf{a})
$$

We call the scalar λ a Lagrange multiplier and this method for finding extreme values of a function f subject to a constraining equation $g(\mathbf{x})=0$ the method of Lagrange multipliers.

Example We look for the extreme values of

$$
f(x, y)=x^{2}+y^{2}-x-y+1
$$

on the set

$$
S=\left\{(x, y): x^{2}+y^{2}=1\right\} .
$$

Let $g(x, y)=x^{2}+y^{2}-1$. Then

$$
\nabla f(x, y)=(2 x-1,2 y-1)
$$

and

$$
\nabla g(x, y)=(2 x, 2 y)
$$

Thus we need to solve the equations

$$
(2 x-1,2 y-1)=\lambda(2 x, 2 y)
$$

and

$$
x^{2}+y^{2}=1 .
$$

That is, we need to solve

$$
\begin{aligned}
2 x-1 & =2 \lambda x \\
2 y-1 & =2 \lambda y \\
x^{2}+y^{2} & =1 .
\end{aligned}
$$

Note first that $\lambda \neq 1$. Then from the first equation we have

$$
x=\frac{1}{2(1-\lambda)}
$$

and from the second

$$
y=\frac{1}{2(1-\lambda)} .
$$

Hence $x=y$. From the last equation, it now follows that

$$
2 x^{2}=1
$$

that is,

$$
x=-\frac{1}{\sqrt{2}} \text { or } x=\frac{1}{\sqrt{2}} .
$$

Thus we have two points to consider for extreme values: $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$. Since S is closed and bounded, we know from the Extreme Value Theorem that one of these values is an absolute maximum of f on S and the other an absolute minimum of f on S. Now

$$
f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=2-\sqrt{2}
$$

and

$$
f\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=2+\sqrt{2}
$$

so f has an absolute maximum value of $2+\sqrt{2}$ at $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ and an absolute minimum value of $2-\sqrt{2}$ at $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

Example Suppose a farmer wishes to construct a rectangular storage bin, without a top, which will hold the largest volume using 300 square meters of material. If we let x and y be the dimensions of the base and z the height of the bin, then we want to maximize the volume

$$
V(x, y, z)=x y z
$$

on the region $D=\{(x, y, z): x>0, y>0, z>0\}$ subject to the constraint

$$
x y+2 x z+2 y z=300
$$

If we let $g(x, y, z)=x y+2 x z+2 y z-300$, then we our problem is to maximize V subject to $g(x, y, z)=0$. Now

$$
\nabla V(x, y, z)=(y z, x z, x y)
$$

and

$$
\nabla g(x, y, z)=(y+2 z, x+2 z, 2 x+2 y)
$$

so we need to solve the equations

$$
\begin{aligned}
& y z=\lambda(y+2 z) \\
& x z=\lambda(x+2 z) \\
& x y=\lambda(2 x+2 y) \\
& x y+2 x z+2 y z=300
\end{aligned}
$$

Now the first two equations imply that

$$
\lambda=\frac{y z}{y+2 z}
$$

and

$$
\lambda=\frac{x z}{x+2 z},
$$

and so

$$
\frac{y z}{y+2 z}=\frac{x z}{x+2 z},
$$

from which it follows that

$$
x y z+2 y z^{2}=x y z+2 x z^{2} .
$$

Hence $2 y z^{2}=2 x z^{2}$, and so $x=y$. Substituting this into the third equation yields $x^{2}=4 \lambda x$, or $x=4 \lambda$. It follows that $y=4 \lambda$ and, from the first equation,

$$
4 \lambda z=4 \lambda^{2}+2 \lambda z
$$

from which we obtain $z=2 \lambda$. Putting these results into the final equation gives us

$$
16 \lambda^{2}+16 \lambda^{2}+16 \lambda^{2}=300
$$

and so

$$
\lambda=\sqrt{\frac{300}{48}}=\sqrt{\frac{25}{4}}= \pm \frac{5}{2} .
$$

Since $x>0, y>0$, and $z>0$, we now have $x=10, y=10$, and $z=5$. Unfortunately, in this case our constraining surface is not bounded, nor do we even have a test to determine if we have found the location of a local extreme value. However, our geometric intuition tells us that there should be a maximum, and we conclude that a bin with dimensions 10 meters by 10 meters by 5 meters will maximize volume for the given surface area of 300 square meters.

17.2 Two constraints

Now suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are all differentiable and we wish to find the extreme values of f subject to the constraints $g(\mathbf{x})=0$ and $h(\mathbf{x})=0$. It follows, as above, that if f has an extremum at \mathbf{a}, then $\nabla f(\mathbf{a})$ is orthogonal to any vector tangent to the intersection of the level sets determined by the conditions $g(\mathbf{x})=0$ and $h(\mathbf{x})=0$. The set of vectors orthogonal to the intersection of these two level sets forms a plane, so it follows that $\nabla f(\mathbf{a})$ lies in the plane spanned by the two vectors $\nabla g(\mathbf{a})$ and $\nabla h(\mathbf{a})$ (provided neither of these vectors is $\mathbf{0}$ and they are not parallel). Hence there must exist scalars λ and μ, again called Lagrange multipliers, such that

$$
\nabla f(\mathbf{a})=\lambda \nabla g(\mathbf{a})+\mu \nabla h(\mathbf{a})
$$

Thus to look for possible extreme values of f, we solve the equations

$$
\begin{aligned}
\nabla f(\mathbf{x}) & =\lambda \nabla g(\mathbf{x})+\mu \nabla h(\mathbf{x}) \\
g(\mathbf{x}) & =0 \\
h(\mathbf{x}) & =0
\end{aligned}
$$

Example Suppose the unit sphere centered at the origin in \mathbb{R}^{3} is heated so that its temperature at a point is given by

$$
T(x, y, z)=80+50(x+z)
$$

Suppose we wish to find the extreme values of T along the intersection D of the sphere with the plane $x+y+z=1$ (see the picture below). That is, we wish to find the extrema of T subject to the constraints

$$
x^{2}+y^{2}+z^{2}=1
$$

and

$$
x+y+z=1 .
$$

Let $g(x, y, z)=x^{2}+y^{2}+z^{2}-1$ and $h(x, y, z)=x+y+z-1$. Now

$$
\begin{gathered}
\nabla T(x, y, z)=(50,0,50) \\
\nabla g(x, y, z)=(2 x, 2 y, 2 z)
\end{gathered}
$$

and

$$
\nabla h(x, y, z)=(1,1,1)
$$

So we need to solve the equations

$$
(50,0,50)=\lambda(2 x, 2 y, 2 z)+\mu(1,1,1)
$$

Intersection of $x^{2}+y^{2}+z^{2}=1$ and $x+y+z=1$

$$
x^{2}+y^{2}+z^{2}=1
$$

and

$$
x+y+z=1 \text {. }
$$

That is, we need to solve

$$
\begin{aligned}
50 & =2 \lambda x+\mu \\
0 & =2 \lambda y+\mu \\
50 & =2 \lambda z+\mu \\
x^{2} & +y^{2}+z^{2}=1 \\
x & +y+z=1 .
\end{aligned}
$$

Note first that we cannot have $\lambda=0$. From the first and third equations we obtain

$$
2 \lambda x+\mu=2 \lambda z+\mu
$$

from which it follows that $x=z$. It now follows from the last equation that

$$
y=1-2 x .
$$

Substituting into the fourth equation, we have

$$
x^{2}+(1-2 x)^{2}+x^{2}=1
$$

that is,

$$
6 x^{2}-4 x=0
$$

Hence $x=0$ or $x=\frac{2}{3}$. When $x=0, z=0$ and $y=1$; when $x=\frac{2}{3}, z=\frac{2}{3}$ and $y=-\frac{1}{3}$. Since D is closed and bounded, we evaluate T at these two points, namely,

$$
T(0,1,0)=80
$$

and

$$
T\left(\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right)=80+\frac{200}{3}=\frac{440}{3}
$$

and see that T has an absolute minimum value of 80 at $(0,1,0)$ and an absolute maximum value of $\frac{440}{3}$ at $\left(\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right)$.

