
Lecture 16: Extreme Values

16.1 Open and closed sets

Definition Given a point a in Rn and a scalar r > 0, we call the set

B(a, r) = {x : |x− a| < r}

the open ball of radius r centered at a.

Definition We say a set U in Rn is open if for every point a in U there exists a scalar
r > 0 such that the open ball B(a, r) is contained in U .

Definition Given a set D in Rn, if the open ball B(a, r) contains both points in D and
points not in D for all r > 0, then we call a a boundary point of D. We call the set of all
boundary points of D the boundary of D. If the boundary of D is a subset of D, then we
say D is closed.

Example An open ball B(a, r) is an open set. The boundary of B(a, r) is the sphere

S(a, r) = {x : |x− a| = r}.

The closed ball
C(a, r) = {x : |x− a| ≤ r}

is a closed set, as is the sphere itself.

Example The set
D = {(x, y) : 0 < x < 2, 0 < y < 3}

is open. We call D an open rectangle. The boundary of D is the enclosing rectangle, which
is a closed set, as it the closed rectangle

R = {(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 3}

16.2 Local extrema

Definition Suppose f : Rn → R. If f(a) ≤ f(x) for all x in some open ball centered
at a, then we say f has a local minimum at a. If f(a) ≥ f(x) for all x in some open ball
centered at a, then we say f has a local maximum at a. If f has either a local maximum
or a local minimum at a, then we say f has a local extremum at a.

Theorem If f : Rn → R is differentiable at a and f has a local extremum at a, then
∇f(a) = 0.

16-1



Lecture 16: Extreme Values 16-2

Definition Suppose f : Rn → R. If f is differentiable at a and ∇f(a) = 0, then we say
a is a stationary point of f . If a is a point at which f is not differentiable, then we call a
a singular point of f . If a is either a stationary point or a singular point of f , then we call
a a critical point. A stationary point at which f does not have a local extremum is called
a saddle point of f .

Recall that if f : R → R, f ′(a) = 0, and f ′′(a) > 0, then f has a local minimum it a (a
local maximum if f ′′(a) < 0). Now suppose f : R2 → R, a is a stationary point of f , and
both fxx(a) > 0 and fyy(a) > 0. Then f has a local minimum at a in directions parallel to
the x and y axes. However, this is not sufficient to guarantee that f has a local minimum
at a, as the next example demonstrates.

Example If f(x, y) = x2+y2−4xy, then ∇f(x, y) = (2x−4y, 2y−4x), ∇f(0, 0) = (0, 0),
fxx(0, 0) = 2 > 0, and fyy(0, 0) = 2 > 0. Hence f has a local minimum along both the x-
and y-axes at (0, 0). However, if we let g(t) = f(t, t) (that is, g takes the values of f along
the line x = y), then g(t) = −2t2, which has a local maximum at t = 0. Hence f has a
local maximum at (0, 0) along the line x = y. Thus f has a saddle point at (0, 0).
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Graph of f(x, y) = x2 + y2 − 4xy
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Second Derivative Test Suppose f : R2 → R has a stationary point at (a, b) and the
second partial derivatives of f are all continuous on an open disk centered at (a, b). Let

D(a, b) = fxx(a, b)fyy(a, b)− (fxy(a, b))2.

Then f has a local minimum at (a, b) if D(a, b) > 0 and fxx(a, b) > 0, a local maximum
at (a, b) if D(a, b) > 0 and fxx(a, b) < 0, and (a, b) is a saddle point of f if D(a, b) < 0.

Note that D(a, b) is the determinant of the matrix[
fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

]
,

which we call the Hessian of f .

Example If f(x, y) = x2 + y2 − 4xy, then

fxy(x, y) = −4,

so
D(0, 0) = (2)(2)− 16 = −12 < 0,

showing once again that (0, 0) is a saddle point of f .

Example Consider
f(x, y) = xye−(x2+y2).

Then
fx(x, y) = −2x2ye−(x2+y2) + xe−(x2+y2) = y(1− 2x2)e−(x2+y2)

and
fy(x, y) = −2xy2e−(x2+y2) + ye−(x2+y2) = x(1− 2y2)e−(x2+y2),

so ∇f(x, y) = (0, 0) when
y(1− 2x2) = 0

x(1− 2y2) = 0.

Hence the critical points are (0, 0),
(
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)
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(
− 1√

2
,− 1√

2

)
.

Now
fxx(x, y) = (4x3y − 6xy)e−(x2+y2),

fxy(x, y) = (4x2y2 − 2x2 − 2y2 + 1)e−(x2+y2),

and
fyy(x, y) = (4xy3 − 6xy)e−(x2+y2),

so
D(0, 0) = (0)(0)− 12 = −1 < 0,
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D
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= (−2e−1)(−2e−1)− 02 = 4e−2 > 0,

D
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D
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)
= (−2e−1)(−2e−1)− 02 = 4e−2 > 0.

Thus f has a local maximums of 1
2e
−1 at
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)
and
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, local minimums of
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)
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)
, and (0, 0) is a saddle point.
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Graph of f(x, y) = xye−(x2+y2)

16.3 Absolute extrema

Definition Suppose f : Rn → R has domain S. If f(a) ≤ f(x) for all x in S, then we
say f has an absolute minimum at a. If f(a) ≥ f(x) for all x in S, then we say f has an
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absolute maximum at a. If f has either an absolute minimum or an absolute maximum at
a, then we say f has an absolute extremum at a.

Definition We say a set S in Rn is bounded if S is a subset of the open ball B(0, r) for
some scalar r.

Extreme Value Theorem If f : Rn → R is continuous on a closed bounded set S, then
f attains an absolute maximum at some point a in S and f attains an absolute minimum
at some point b in S.

Example Consider the function f(x, y) = x2 + y2− x− y+ 1 defined on the closed disk
S = {(x, y) : x2 + y2 ≤ 1}. To find the absolute extreme values of f , we first find the
critical values of f . Now

fx(x, y) = 2x− 1

and
fy(x, y) = 2y − 1,

so ∇f(x, y) = (0, 0) when (x, y) =
(

1
2 ,

1
2

)
. To check the boundary of S, we parametrize it

by ϕ(t) = (cos(t), sin(t)) for 0 ≤ t ≤ 2π and let

g(t) = f(ϕ(t)) = cos2(t) + sin2(t)− cos(t)− sin(t) + 1 = 2− cos(t)− sin(t).

Now g′(t) = sin(t) − cos(t), and so g′(t) = 0 when t = π
4 or t = 5π

4 . Hence the extreme
values of f must occur at

(
1
2 ,

1
2

)
,

ϕ
(π

4

)
=
(

1√
2
,

1√
2

)
,

ϕ

(
5π
4

)
=
(
− 1√

2
,− 1√

2

)
,

or
g(0) = g(2π) = (1, 0).

Now

f

(
1
2
,

1
2

)
=

1
2
,

f

(
1√
2
,

1√
2

)
= 2−

√
2,

f

(
− 1√

2
,− 1√

2

)
= 2 +

√
2,

and
f(1, 0) = 1.
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Graph of f(x, y) = x2 + y2 − x− y + 1 on {(x, y) : x2 + y2 ≤ 1}

Hence f has an absolute minimum value of 1
2 at

(
1
2 ,

1
2

)
and an absolute maximum value

of 2 +
√

2 at
(
− 1√

2
,− 1√

2

)
.

Example A farmer wishes to build a rectangular storage bin, without a top, with a
volume of 500 cubic meters using the least amount of material possible. If we let x and y
be the dimensions of the base of the bin and z be the height, all measured in meters, then
the farmer wishes to minimize the surface area of the bin, given by

S = xy + 2xz + 2yz,

subject to the constraint on the volume, namely,

500 = xyz.

Solving for z in the latter expression and substituting into the expression for S, we have

S = xy +
1000
y

+
1000
x

.

Our problem is then to minimize S over the region

T = {(x, y) : x > 0, y > 0}.

Now
∂S

∂x
= y − 1000

x2
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and
∂S

∂y
= x− 1000

y2
,

so we need to solve the pair of equations

y − 1000
x2

= 0

x− 1000
y2

= 0.

Solving for y in the first of these, we have

y =
1000
x2

;

substituting into the second gives us

0 = x− x4

1000
= x

(
1− x3

1000

)
,

which has solutions x = 0 and x = 10. The first of these will not give solutions in T , and
from the second we obtain

y =
1000
102

= 10.

Hence we have the single stationary point (10, 10). Now

∂2S

∂x2
=

2000
x3

,

∂2S

∂y∂x
= 1,

and
∂2S

∂y2
=

2000
y3

,

so
D(10, 10) = (2)(2)− 12 = 3.

Hence S has a local minimum at (10, 10). Although this does not guarantee that S has
an absolute minimum at (10, 10) (as it would in the analogous one-dimensional case),
nevertheless it is indicated from the fact that S grows without bound as (x, y) approaches
either axis or as |(x, y)| increases (see the graph below). Hence we conclude that the
dimensions x = 10 meters, y = 10 meters, and z = 5 meters will minimize the amount of
material required to construct the bin.
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