Lecture 16: Extreme Values

16.1 Open and closed sets

Definition Given a point a in \mathbb{R}^{n} and a scalar $r>0$, we call the set

$$
B(\mathbf{a}, r)=\{\mathbf{x}:|\mathbf{x}-\mathbf{a}|<r\}
$$

the open ball of radius r centered at a.
Definition We say a set U in \mathbb{R}^{n} is open if for every point a in U there exists a scalar $r>0$ such that the open ball $B(\mathbf{a}, r)$ is contained in U.

Definition Given a set D in \mathbb{R}^{n}, if the open ball $B(\mathbf{a}, r)$ contains both points in D and points not in D for all $r>0$, then we call a a boundary point of D. We call the set of all boundary points of D the boundary of D. If the boundary of D is a subset of D, then we say D is closed.

Example An open ball $B(\mathbf{a}, r)$ is an open set. The boundary of $B(\mathbf{a}, r)$ is the sphere

$$
S(\mathbf{a}, r)=\{\mathbf{x}:|\mathbf{x}-\mathbf{a}|=r\}
$$

The closed ball

$$
C(\mathbf{a}, r)=\{\mathbf{x}:|\mathbf{x}-\mathbf{a}| \leq r\}
$$

is a closed set, as is the sphere itself.

Example The set

$$
D=\{(x, y): 0<x<2,0<y<3\}
$$

is open. We call D an open rectangle. The boundary of D is the enclosing rectangle, which is a closed set, as it the closed rectangle

$$
R=\{(x, y): 0 \leq x \leq 2,0 \leq y \leq 3\}
$$

16.2 Local extrema

Definition Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. If $f(\mathbf{a}) \leq f(\mathbf{x})$ for all x in some open ball centered at \mathbf{a}, then we say f has a local minimum at \mathbf{a}. If $f(\mathbf{a}) \geq f(\mathbf{x})$ for all x in some open ball centered at \mathbf{a}, then we say f has a local maximum at \mathbf{a}. If f has either a local maximum or a local minimum at \mathbf{a}, then we say f has a local extremum at a.

Theorem If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at a and f has a local extremum at \mathbf{a}, then $\nabla f(\mathbf{a})=\mathbf{0}$.

Definition Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. If f is differentiable at \mathbf{a} and $\nabla f(\mathbf{a})=\mathbf{0}$, then we say a is a stationary point of f. If \mathbf{a} is a point at which f is not differentiable, then we call a a singular point of f. If a is either a stationary point or a singular point of f, then we call a a critical point. A stationary point at which f does not have a local extremum is called a saddle point of f.

Recall that if $f: \mathbb{R} \rightarrow \mathbb{R}, f^{\prime}(a)=0$, and $f^{\prime \prime}(a)>0$, then f has a local minimum it a (a local maximum if $\left.f^{\prime \prime}(a)<0\right)$. Now suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, a is a stationary point of f, and both $f_{x x}(\mathbf{a})>0$ and $f_{y y}(\mathbf{a})>0$. Then f has a local minimum at a in directions parallel to the x and y axes. However, this is not sufficient to guarantee that f has a local minimum at \mathbf{a}, as the next example demonstrates.

Example If $f(x, y)=x^{2}+y^{2}-4 x y$, then $\nabla f(x, y)=(2 x-4 y, 2 y-4 x), \nabla f(0,0)=(0,0)$, $f_{x x}(0,0)=2>0$, and $f_{y y}(0,0)=2>0$. Hence f has a local minimum along both the x and y-axes at $(0,0)$. However, if we let $g(t)=f(t, t)$ (that is, g takes the values of f along the line $x=y$), then $g(t)=-2 t^{2}$, which has a local maximum at $t=0$. Hence f has a local maximum at $(0,0)$ along the line $x=y$. Thus f has a saddle point at $(0,0)$.

Graph of $f(x, y)=x^{2}+y^{2}-4 x y$

Second Derivative Test Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has a stationary point at (a, b) and the second partial derivatives of f are all continuous on an open disk centered at (a, b). Let

$$
D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left(f_{x y}(a, b)\right)^{2}
$$

Then f has a local minimum at (a, b) if $D(a, b)>0$ and $f_{x x}(a, b)>0$, a local maximum at (a, b) if $D(a, b)>0$ and $f_{x x}(a, b)<0$, and (a, b) is a saddle point of f if $D(a, b)<0$.

Note that $D(a, b)$ is the determinant of the matrix

$$
\left[\begin{array}{ll}
f_{x x}(a, b) & f_{x y}(a, b) \\
f_{y x}(a, b) & f_{y y}(a, b)
\end{array}\right]
$$

which we call the Hessian of f.
Example If $f(x, y)=x^{2}+y^{2}-4 x y$, then

$$
f_{x y}(x, y)=-4
$$

so

$$
D(0,0)=(2)(2)-16=-12<0
$$

showing once again that $(0,0)$ is a saddle point of f.
Example Consider

$$
f(x, y)=x y e^{-\left(x^{2}+y^{2}\right)}
$$

Then

$$
f_{x}(x, y)=-2 x^{2} y e^{-\left(x^{2}+y^{2}\right)}+x e^{-\left(x^{2}+y^{2}\right)}=y\left(1-2 x^{2}\right) e^{-\left(x^{2}+y^{2}\right)}
$$

and

$$
f_{y}(x, y)=-2 x y^{2} e^{-\left(x^{2}+y^{2}\right)}+y e^{-\left(x^{2}+y^{2}\right)}=x\left(1-2 y^{2}\right) e^{-\left(x^{2}+y^{2}\right)}
$$

so $\nabla f(x, y)=(0,0)$ when

$$
\begin{aligned}
& y\left(1-2 x^{2}\right)=0 \\
& x\left(1-2 y^{2}\right)=0
\end{aligned}
$$

Hence the critical points are $(0,0),\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$, and $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$. Now

$$
\begin{gathered}
f_{x x}(x, y)=\left(4 x^{3} y-6 x y\right) e^{-\left(x^{2}+y^{2}\right)} \\
f_{x y}(x, y)=\left(4 x^{2} y^{2}-2 x^{2}-2 y^{2}+1\right) e^{-\left(x^{2}+y^{2}\right)}
\end{gathered}
$$

and

$$
f_{y y}(x, y)=\left(4 x y^{3}-6 x y\right) e^{-\left(x^{2}+y^{2}\right)}
$$

so

$$
D(0,0)=(0)(0)-1^{2}=-1<0
$$

$$
\begin{aligned}
& D\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\left(-2 e^{-1}\right)\left(-2 e^{-1}\right)-0^{2}=4 e^{-2}>0 \\
& D\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\left(2 e^{-1}\right)\left(2 e^{-1}\right)-0^{2}=4 e^{-2}>0 \\
& D\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=\left(2 e^{-1}\right)\left(2 e^{-1}\right)-0^{2}=4 e^{-2}>0
\end{aligned}
$$

and

$$
D\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=\left(-2 e^{-1}\right)\left(-2 e^{-1}\right)-0^{2}=4 e^{-2}>0
$$

Thus f has a local maximums of $\frac{1}{2} e^{-1}$ at $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$, local minimums of $-\frac{1}{2} e^{-1}$ at $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, and $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$, and $(0,0)$ is a saddle point.

$$
\text { Graph of } f(x, y)=x y e^{-\left(x^{2}+y^{2}\right)}
$$

16.3 Absolute extrema

Definition Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has domain S. If $f(\mathbf{a}) \leq f(\mathbf{x})$ for all \mathbf{x} in S, then we say f has an absolute minimum at \mathbf{a}. If $f(\mathbf{a}) \geq f(\mathbf{x})$ for all \mathbf{x} in S, then we say f has an
absolute maximum at a. If f has either an absolute minimum or an absolute maximum at a, then we say f has an absolute extremum at a.

Definition We say a set S in \mathbb{R}^{n} is bounded if S is a subset of the open ball $B(\mathbf{0}, r)$ for some scalar r.

Extreme Value Theorem If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous on a closed bounded set S, then f attains an absolute maximum at some point a in S and f attains an absolute minimum at some point bin S.

Example Consider the function $f(x, y)=x^{2}+y^{2}-x-y+1$ defined on the closed disk $S=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. To find the absolute extreme values of f, we first find the critical values of f. Now

$$
f_{x}(x, y)=2 x-1
$$

and

$$
f_{y}(x, y)=2 y-1
$$

so $\nabla f(x, y)=(0,0)$ when $(x, y)=\left(\frac{1}{2}, \frac{1}{2}\right)$. To check the boundary of S, we parametrize it by $\varphi(t)=(\cos (t), \sin (t))$ for $0 \leq t \leq 2 \pi$ and let

$$
g(t)=f(\varphi(t))=\cos ^{2}(t)+\sin ^{2}(t)-\cos (t)-\sin (t)+1=2-\cos (t)-\sin (t)
$$

Now $g^{\prime}(t)=\sin (t)-\cos (t)$, and so $g^{\prime}(t)=0$ when $t=\frac{\pi}{4}$ or $t=\frac{5 \pi}{4}$. Hence the extreme values of f must occur at $\left(\frac{1}{2}, \frac{1}{2}\right)$,

$$
\begin{aligned}
\varphi\left(\frac{\pi}{4}\right) & =\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \\
\varphi\left(\frac{5 \pi}{4}\right) & =\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right),
\end{aligned}
$$

or

$$
g(0)=g(2 \pi)=(1,0)
$$

Now

$$
\begin{gathered}
f\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{2} \\
f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=2-\sqrt{2} \\
f\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=2+\sqrt{2}
\end{gathered}
$$

and

$$
f(1,0)=1
$$

$$
\text { Graph of } f(x, y)=x^{2}+y^{2}-x-y+1 \text { on }\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

Hence f has an absolute minimum value of $\frac{1}{2}$ at $\left(\frac{1}{2}, \frac{1}{2}\right)$ and an absolute maximum value of $2+\sqrt{2}$ at $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$.

Example A farmer wishes to build a rectangular storage bin, without a top, with a volume of 500 cubic meters using the least amount of material possible. If we let x and y be the dimensions of the base of the bin and z be the height, all measured in meters, then the farmer wishes to minimize the surface area of the bin, given by

$$
S=x y+2 x z+2 y z
$$

subject to the constraint on the volume, namely,

$$
500=x y z
$$

Solving for z in the latter expression and substituting into the expression for S, we have

$$
S=x y+\frac{1000}{y}+\frac{1000}{x} .
$$

Our problem is then to minimize S over the region

$$
T=\{(x, y): x>0, y>0\}
$$

Now

$$
\frac{\partial S}{\partial x}=y-\frac{1000}{x^{2}}
$$

and

$$
\frac{\partial S}{\partial y}=x-\frac{1000}{y^{2}}
$$

so we need to solve the pair of equations

$$
\begin{aligned}
& y-\frac{1000}{x^{2}}=0 \\
& x-\frac{1000}{y^{2}}=0
\end{aligned}
$$

Solving for y in the first of these, we have

$$
y=\frac{1000}{x^{2}}
$$

substituting into the second gives us

$$
0=x-\frac{x^{4}}{1000}=x\left(1-\frac{x^{3}}{1000}\right)
$$

which has solutions $x=0$ and $x=10$. The first of these will not give solutions in T, and from the second we obtain

$$
y=\frac{1000}{10^{2}}=10
$$

Hence we have the single stationary point $(10,10)$. Now

$$
\begin{gathered}
\frac{\partial^{2} S}{\partial x^{2}}=\frac{2000}{x^{3}} \\
\frac{\partial^{2} S}{\partial y \partial x}=1
\end{gathered}
$$

and

$$
\frac{\partial^{2} S}{\partial y^{2}}=\frac{2000}{y^{3}}
$$

so

$$
D(10,10)=(2)(2)-1^{2}=3
$$

Hence S has a local minimum at $(10,10)$. Although this does not guarantee that S has an absolute minimum at $(10,10)$ (as it would in the analogous one-dimensional case), nevertheless it is indicated from the fact that S grows without bound as (x, y) approaches either axis or as $|(x, y)|$ increases (see the graph below). Hence we conclude that the dimensions $x=10$ meters, $y=10$ meters, and $z=5$ meters will minimize the amount of material required to construct the bin.

Graph of $S=x y+\frac{1000}{y}+\frac{1000}{x}$

