Lecture 16: Extreme Values

16.1 Open and closed sets

Definition Given a point a in R™ and a scalar » > 0, we call the set
B(a,r)={x:|x—a|] <r}
the open ball of radius r centered at a.

Definition We say a set U in R" is open if for every point a in U there exists a scalar
r > 0 such that the open ball B(a,r) is contained in U.

Definition Given a set D in R", if the open ball B(a,r) contains both points in D and
points not in D for all » > 0, then we call a a boundary point of D. We call the set of all
boundary points of D the boundary of D. If the boundary of D is a subset of D, then we
say D is closed.

Example An open ball B(a,r) is an open set. The boundary of B(a,r) is the sphere
S(a,r)={x:|x—a|l=r}.

The closed ball
Cla,r) ={x:|x—a|] <r}

is a closed set, as is the sphere itself.

Example The set
D=A{(z,y):0<x<2,0<y<3}

is open. We call D an open rectangle. The boundary of D is the enclosing rectangle, which
is a closed set, as it the closed rectangle

R={(z,y):0<2<20<y<3}

16.2 Local extrema

Definition Suppose f : R" — R. If f(a) < f(x) for all x in some open ball centered
at a, then we say f has a local minimum at a. If f(a) > f(x) for all x in some open ball
centered at a, then we say f has a local maximum at a. If f has either a local maximum
or a local minimum at a, then we say f has a local extremum at a.

Theorem If f: R"™ — R is differentiable at a and f has a local extremum at a, then

Vf(a)=0.

16-1



Lecture 16: Extreme Values 16-2

Definition Suppose f: R" — R. If f is differentiable at a and V f(a) = 0, then we say
a is a stationary point of f. If a is a point at which f is not differentiable, then we call a
a singular point of f. If a is either a stationary point or a singular point of f, then we call
a a critical point. A stationary point at which f does not have a local extremum is called
a saddle point of f.

Recall that if f : R — R, f’(a) = 0, and f”(a) > 0, then f has a local minimum it a (a
local maximum if f”(a) < 0). Now suppose f : R? — R, a is a stationary point of f, and
both f;.(a) > 0 and f,,(a) > 0. Then f has a local minimum at a in directions parallel to
the z and y axes. However, this is not sufficient to guarantee that f has a local minimum
at a, as the next example demonstrates.

Example If f(x,y) = 2% +y?—4wy, then Vf(z,y) = (2x—4y, 2y—4z), V£(0,0) = (0,0),
f22(0,0) =2 >0, and f,,(0,0) =2 > 0. Hence f has a local minimum along both the z-
and y-axes at (0,0). However, if we let g(t) = f(t,t) (that is, g takes the values of f along
the line = y), then g(t) = —2t2, which has a local maximum at ¢ = 0. Hence f has a
local maximum at (0,0) along the line = y. Thus f has a saddle point at (0,0).

Graph of f(z,y) = 2? + y? — 4ay
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Second Derivative Test Suppose f : R*> — R has a stationary point at (a,b) and the
second partial derivatives of f are all continuous on an open disk centered at (a,b). Let

D(a7b) = fxx(CL?b)fyy(a?b) - (fa?y(a7b))2'

Then f has a local minimum at (a,b) if D(a,b) > 0 and f,.(a,b) > 0, a local maximum
at (a,b) if D(a,b) > 0 and f,,(a,b) <0, and (a,b) is a saddle point of f if D(a,b) < 0.

Note that D(a,b) is the determinant of the matrix

fez(a,b) fmy(aab)
fyz(a,b)  fyy(a,b) |’

which we call the Hessian of f.

Example If f(z,y) = 22 + y? — 4xy, then

fwy(xvy) = _47
SO
D(0,0)=(2)(2) —16 = -12 < 0,
showing once again that (0,0) is a saddle point of f.

Example Consider
flz,y) = zye™ @ V7).,
Then
folz,y) = —2$2y€7(x2+3’2) +pe~ @) = y(l — 2x2)e*(1‘2+y2)

and
fo(@,y) = —2qy2e @ V) 4 yem () = (1 — 9y2)em (@YY,

so Vf(z,y) = (0,0) when
y(1 —22%) =

0
z(1—2y%) =0.

Hence the critical points are (0, 0), (%7 %)7 <_%7 %)a (%, —%» and (—%, _%>
NOW Fonlz,y) = (4ady — 6ay)e™ @ ),
foy(z,y) = (42%y® — 227 — 2¢° + 1)6—(w2+y2)’
and
fuy(2,y) = (4zy® — 6xy)e‘<x2+92),

" D(0,0) = (0)(0) — 1 = —1 < 0,
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Thus f has a local maximums of %e‘l at (%, %) and (_ﬁ’ —%), local minimums of

(2e71)(2e71) — 0% =4e 2 > 0,
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(—2e ™ H(—2e7H — 02 =4e"2 > 0.

—%e_l at (—%, \%), and (%, —%), and (0,0) is a saddle point.
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Graph of f(z,y) = xye_(w2+y2)

16.3 Absolute extrema

Definition Suppose f : R" — R has domain S. If f(a) < f(x) for all x in S, then we
say f has an absolute minimum at a. If f(a) > f(x) for all x in S, then we say f has an
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absolute mazimum at a. If f has either an absolute minimum or an absolute maximum at
a, then we say f has an absolute extremum at a.

Definition We say a set S in R" is bounded if S is a subset of the open ball B(0,r) for
some scalar 7.

Extreme Value Theorem If f:R" — R is continuous on a closed bounded set S, then
f attains an absolute maximum at some point a in S and f attains an absolute minimum
at some point b in S.

Example Consider the function f(z,y) = 2? +y*> — 2 — y + 1 defined on the closed disk
S = {(x,y) : 2> + y* < 1}. To find the absolute extreme values of f, we first find the
critical values of f. Now

Jolw,y) = 20— 1

and
so Vf(z,y) = (0,0) when (z,y) = (% %) To check the boundary of S, we parametrize it
by ¢(t) = (cos(t),sin(t)) for 0 < t < 2w and let

g(t) = f(p(t)) = cos?(t) + sin?(t) — cos(t) — sin(t) + 1 = 2 — cos(t) — sin(t).

Now ¢'(t) = sin(t) — cos(t), and so ¢/(t) = 0 when t = Z or t = 2Z. Hence the extreme
values of f must occur at (

1
202)

: 9(0) = g(2m) = (1,0)
Now 11 1
f(??)zi’
f (% %) =212,
and
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Graph of f(z,y) =22+ 9> —z—y+1on {(z,y) : 22 +y? < 1}

Hence f has an absolute minimum value of % at (%, %) and an absolute maximum value
1 1

Example A farmer wishes to build a rectangular storage bin, without a top, with a
volume of 500 cubic meters using the least amount of material possible. If we let x and y
be the dimensions of the base of the bin and z be the height, all measured in meters, then
the farmer wishes to minimize the surface area of the bin, given by

S =uxy+ 2xz+ 2yz,
subject to the constraint on the volume, namely,
500 = zyz.

Solving for z in the latter expression and substituting into the expression for S, we have

1000 = 1000
S=xy+— +—.
y x

Our problem is then to minimize S over the region
T={(z,y) : x>0,y >0}

Now
oS 1000

83::y_ 2
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and
as B 1000

— = ,
dy y?

so we need to solve the pair of equations

y=—2 =0
1000
— =0.
Y2
Solving for y in the first of these, we have
1000
Y=

substituting into the second gives us

.T4 .CU3
0=q— —z(1- —=—
1000 " ( 1000

)
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which has solutions x = 0 and z = 10. The first of these will not give solutions in 7', and

from the second we obtain
_ 1000

=<z = 0.

Hence we have the single stationary point (10, 10). Now

925 2000

ox2 a3’

Ps

oyoxr
and

925 2000

o2 oy
SO

D(10,10) = (2)(2) — 12 = 3.

Hence S has a local minimum at (10, 10). Although this does not guarantee that S has
an absolute minimum at (10,10) (as it would in the analogous one-dimensional case),
nevertheless it is indicated from the fact that S grows without bound as (z,y) approaches
either axis or as |(x,y)| increases (see the graph below). Hence we conclude that the
dimensions x = 10 meters, y = 10 meters, and z = 5 meters will minimize the amount of

material required to construct the bin.
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