Lecture 15: The Gradient

15.1 Directional derivatives revisited

Recall: If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and \mathbf{u} is a unit vector, then the directional derivative of f at a in the direction of \mathbf{u} is

$$
D_{\mathbf{u}} f(\mathbf{a})=\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+h \mathbf{u})-f(\mathbf{a})}{h}
$$

provided the limit exists. Now if we define $g: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g(t)=f(\mathbf{a}+t \mathbf{u})
$$

then

$$
g^{\prime}(0)=\lim _{h \rightarrow 0} \frac{g(h)-g(0)}{h}=\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+h \mathbf{u})-f(\mathbf{a})}{h}=D_{\mathbf{u}} f(\mathbf{a}) .
$$

Moreover, by the chain rule, we have

$$
g^{\prime}(0)=\nabla f(\mathbf{a}) \cdot \mathbf{u}
$$

Hence we have the following theorem.
Theorem If f is differentiable at \mathbf{a} and \mathbf{u} is unit vector, then

$$
D_{\mathbf{u}} f(\mathbf{a})=\nabla f(\mathbf{a}) \cdot \mathbf{u}
$$

Example Let $f(x, y)=4-x^{2}-y^{2}$. Then

$$
\nabla f(x, y)=(-2 x,-2 y)
$$

If

$$
\mathbf{u}=\frac{1}{\sqrt{2}}(-1,-1)
$$

then

$$
D_{\mathbf{u}} f(1,1)=\nabla f(1,1) \cdot \mathbf{u}=(-2,-2) \cdot \frac{1}{\sqrt{2}}(-1,-1)=\frac{4}{\sqrt{2}}=2 \sqrt{2}
$$

a result we found earlier by a direct computation. Note that

$$
D_{-\mathbf{u}} f(1,1)=\nabla f(1,1) \cdot(-\mathbf{u})=-(\nabla f(1,1) \cdot \mathbf{u})=-D_{\mathbf{u}} f(1,1)=-2 \sqrt{2}
$$

Note that the final calculation in the example holds in general:

$$
D_{-\mathbf{u}} f(\mathbf{a})=-D_{\mathbf{u}} f(\mathbf{a})
$$

15.2 Direction of maximum increase

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at \mathbf{a} and \mathbf{u} is a unit vector, then

$$
\left|D_{\mathbf{u}} f(\mathbf{a})\right|=|\nabla f(\mathbf{a}) \cdot \mathbf{u}| \leq|\nabla f(\mathbf{a})||\mathbf{u}|=|\nabla f(\mathbf{a})|,
$$

with equality if and only if \mathbf{u} and $\nabla f(\mathbf{a})$ are parallel. Hence $D_{\mathbf{u}} f(\mathbf{a})$ attains a maximum value of $|\nabla f(\mathbf{a})|$ when

$$
\mathbf{u}=\frac{1}{|\nabla f(\mathbf{a})|} \nabla f(\mathbf{a})
$$

and $D_{\mathbf{u}} f(\mathbf{a})$ attains a minimum value of $-|\nabla f(\mathbf{a})|$ when

$$
\mathbf{u}=-\frac{1}{|\nabla f(\mathbf{a})|} \nabla f(\mathbf{a})
$$

Example A metal plate is heated so that its temperature at a point (x, y) is given by

$$
T(x, y)=100 x^{2} e^{-\frac{1}{20}\left(x^{2}+y^{2}\right)}
$$

Then

$$
\frac{\partial}{\partial x} T(x, y)=-10 x^{3} e^{-\frac{1}{20}\left(x^{2}+y^{2}\right)}+200 x e^{-\frac{1}{20}\left(x^{2}+y^{2}\right)}=10 x e^{-\frac{1}{20}\left(x^{2}+y^{2}\right)}\left(20-x^{2}\right)
$$

and

$$
\frac{\partial}{\partial y} T(x, y)=-10 x^{2} y e^{-\frac{1}{20}\left(x^{2}+y^{2}\right)}
$$

Thus

$$
\nabla T(x, y)=10 x e^{-\frac{1}{20}\left(x^{2}+y^{2}\right)}\left(20-x^{2},-x y\right)
$$

Hence, for example,

$$
\nabla T(1,2)=10 e^{-\frac{1}{4}}(19,-2)
$$

If we let

$$
\mathbf{u}=\frac{1}{\sqrt{365}}(19,-2)
$$

then, from the point $(1,2)$, the temperature is increasing most rapidly in the direction of \mathbf{u} and is decreasing most rapidly in the direction of $-\mathbf{u}$. Moreover, the rate of increase in the direction of \mathbf{u} is

$$
|\nabla T(1,2)|=10 \sqrt{365} e^{-\frac{1}{4}} \approx 148.79
$$

the rate of increase in the direction of $-\mathbf{u}$ is

$$
-|\nabla T(1,2)|=-10 \sqrt{365} e^{-\frac{1}{4}} \approx-148.79
$$

15.3 The gradient and level sets

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at \mathbf{a}, let $c=f(\mathbf{a})$, and let L be the level set of all points in \mathbb{R}^{n} satisfying $f(\mathbf{x})=c$. If $\varphi: \mathbb{R} \rightarrow \mathbb{R}^{n}$ parametrizes a curve C which lies entirely in L with $\varphi\left(t_{0}\right)=\mathbf{a}$, then $f(\varphi(t))=c$ for all t. Hence

$$
0=\frac{d}{d t} f(\varphi(t))=\nabla f(\varphi(t)) \cdot \varphi^{\prime}(t)
$$

for all t. In particular,

$$
\nabla f(\mathbf{a}) \cdot \varphi^{\prime}\left(t_{0}\right)=0
$$

Since φ was arbitrary, this says that $\nabla f(\mathbf{a})$ is orthogonal to any vector which is tangent to L at \mathbf{a}. In particular, for $n=2, \nabla f(\mathbf{a})$ is orthogonal to the line tangent to the level curve through a, and, for $n=3, \nabla f(\mathbf{a})$ is orthogonal to the plane tangent to the level surface through a.

Example Let E be the ellipse with equation

$$
x^{2}+4 y^{2}=16
$$

Then E is a level curve of the function

$$
f(x, y)=x^{2}+4 y^{2}
$$

To find an equation of the line tangent to E at $(2, \sqrt{3})$, we find that

$$
\nabla f(x, y)=(2 x, 8 y)
$$

and

$$
\nabla f(2, \sqrt{3})=(4,8 \sqrt{3})
$$

Since $\nabla f(2, \sqrt{3})$ is orthogonal to the tangent line at $(2, \sqrt{3})$, an equation for the tangent line is given by

$$
(4,8 \sqrt{3}) \cdot(x-2, y-\sqrt{3})=0
$$

Expanding, we see that

$$
4 x+8 \sqrt{3} y=32
$$

is an equation for the line tangent to E at $(2, \sqrt{3})$.

Ellipse with tangent line

Example Let E be the ellipsoid with equation

$$
x^{2}+2 y^{2}+4 z^{2}=21
$$

Then E is a level surface of the function

$$
f(x, y)=x^{2}+2 y^{2}+4 z^{2}
$$

To find an equation of the plane tangent to E at $(3,2,1)$, we find that

$$
\nabla f(x, y, z)=(2 x, 4 y, 8 z)
$$

and

$$
\nabla f(3,2,1)=(6,8,8)
$$

Since $\nabla f(3,2,1)$ is orthogonal to the tangent plane at $(3,2,1)$, an equation for the tangent plane is given by

$$
(6,8,8) \cdot(x-3, y-2, z-1)=0
$$

Expanding, we see that

$$
6 x+8 y+8 z=42,
$$

or, equivalently,

$$
3 x+4 y+4 z=21
$$

is an equation for the plane tangent to E at $(3,2,1)$.

Ellipsoid with tangent plane

15.4 Plotting vector fields

Because of the properties of the gradient vector discussed above, a plot of the gradient vectors on a lattice of points can be very helpful in visualizing a function.

Example Here is a plot of the surface

$$
T(x, y)=100 x^{2} e^{-\frac{1}{20}\left(x^{2}+y^{2}\right)}:
$$

Graph of $T(x, y)=100 x^{2} e^{-\frac{1}{20}\left(x^{2}+y^{2}\right)}$
and here is the corresponding plot of gradient vectors:

Gradient vector field of $T(x, y)=100 x^{2} e^{-\frac{1}{20}\left(x^{2}+y^{2}\right)}$

