
Lecture 15: The Gradient

15.1 Directional derivatives revisited

Recall: If f : Rn → R and u is a unit vector, then the directional derivative of f at a in
the direction of u is

Duf(a) = lim
h→0

f(a + hu)− f(a)
h

,

provided the limit exists. Now if we define g : R→ R by

g(t) = f(a + tu),

then

g′(0) = lim
h→0

g(h)− g(0)
h

= lim
h→0

f(a + hu)− f(a)
h

= Duf(a).

Moreover, by the chain rule, we have

g′(0) = ∇f(a) · u.

Hence we have the following theorem.

Theorem If f is differentiable at a and u is unit vector, then

Duf(a) = ∇f(a) · u.

Example Let f(x, y) = 4− x2 − y2. Then

∇f(x, y) = (−2x,−2y).

If
u =

1√
2

(−1,−1),

then
Duf(1, 1) = ∇f(1, 1) · u = (−2,−2) · 1√

2
(−1,−1) =

4√
2

= 2
√

2,

a result we found earlier by a direct computation. Note that

D−uf(1, 1) = ∇f(1, 1) · (−u) = −(∇f(1, 1) · u) = −Duf(1, 1) = −2
√

2.

Note that the final calculation in the example holds in general:

D−uf(a) = −Duf(a).
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15.2 Direction of maximum increase

If f : Rn → R is differentiable at a and u is a unit vector, then

|Duf(a)| = |∇f(a) · u| ≤ |∇f(a)||u| = |∇f(a)|,

with equality if and only if u and ∇f(a) are parallel. Hence Duf(a) attains a maximum
value of |∇f(a)| when

u =
1

|∇f(a)|
∇f(a),

and Duf(a) attains a minimum value of −|∇f(a)| when

u = − 1
|∇f(a)|

∇f(a).

Example A metal plate is heated so that its temperature at a point (x, y) is given by

T (x, y) = 100x2e−
1
20 (x2+y2).

Then

∂

∂x
T (x, y) = −10x3e−

1
20 (x2+y2) + 200xe−

1
20 (x2+y2) = 10xe−

1
20 (x2+y2)(20− x2)

and
∂

∂y
T (x, y) = −10x2ye−

1
20 (x2+y2).

Thus
∇T (x, y) = 10xe−

1
20 (x2+y2)(20− x2,−xy).

Hence, for example,
∇T (1, 2) = 10e−

1
4 (19,−2).

If we let
u =

1√
365

(19,−2),

then, from the point (1, 2), the temperature is increasing most rapidly in the direction of
u and is decreasing most rapidly in the direction of −u. Moreover, the rate of increase in
the direction of u is

|∇T (1, 2)| = 10
√

365e−
1
4 ≈ 148.79;

the rate of increase in the direction of −u is

−|∇T (1, 2)| = −10
√

365e−
1
4 ≈ −148.79.
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15.3 The gradient and level sets

Suppose f : Rn → R is differentiable at a, let c = f(a), and let L be the level set of all
points in Rn satisfying f(x) = c. If ϕ : R→ R

n parametrizes a curve C which lies entirely
in L with ϕ(t0) = a, then f(ϕ(t)) = c for all t. Hence

0 =
d

dt
f(ϕ(t)) = ∇f(ϕ(t)) · ϕ′(t)

for all t. In particular,
∇f(a) · ϕ′(t0) = 0.

Since ϕ was arbitrary, this says that ∇f(a) is orthogonal to any vector which is tangent to
L at a. In particular, for n = 2, ∇f(a) is orthogonal to the line tangent to the level curve
through a, and, for n = 3, ∇f(a)is orthogonal to the plane tangent to the level surface
through a.

Example Let E be the ellipse with equation

x2 + 4y2 = 16.

Then E is a level curve of the function

f(x, y) = x2 + 4y2.

To find an equation of the line tangent to E at (2,
√

3), we find that

∇f(x, y) = (2x, 8y)

and
∇f(2,

√
3) = (4, 8

√
3).

Since ∇f(2,
√

3) is orthogonal to the tangent line at (2,
√

3), an equation for the tangent
line is given by

(4, 8
√

3) · (x− 2, y −
√

3) = 0.

Expanding, we see that
4x+ 8

√
3y = 32

is an equation for the line tangent to E at (2,
√

3).
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Example Let E be the ellipsoid with equation

x2 + 2y2 + 4z2 = 21.

Then E is a level surface of the function

f(x, y) = x2 + 2y2 + 4z2.

To find an equation of the plane tangent to E at (3, 2, 1), we find that

∇f(x, y, z) = (2x, 4y, 8z)

and
∇f(3, 2, 1) = (6, 8, 8).

Since ∇f(3, 2, 1) is orthogonal to the tangent plane at (3, 2, 1), an equation for the tangent
plane is given by

(6, 8, 8) · (x− 3, y − 2, z − 1) = 0.

Expanding, we see that
6x+ 8y + 8z = 42,

or, equivalently,
3x+ 4y + 4z = 21,

is an equation for the plane tangent to E at (3, 2, 1).
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15.4 Plotting vector fields

Because of the properties of the gradient vector discussed above, a plot of the gradient
vectors on a lattice of points can be very helpful in visualizing a function.

Example Here is a plot of the surface

T (x, y) = 100x2e−
1
20 (x2+y2) :
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Graph of T (x, y) = 100x2e−
1
20 (x2+y2)

and here is the corresponding plot of gradient vectors:
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