Lecture 14: The Chain Rule

14.1 The gradient

Definition Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and all first-order partial derivatives of f exist at a. We call

$$
\nabla f(\mathbf{a})=\left(\frac{\partial}{\partial x_{1}} f(\mathbf{a}), \frac{\partial}{\partial x_{2}} f(\mathbf{a}), \ldots, \frac{\partial}{\partial x_{n}} f(\mathbf{a})\right)
$$

the gradient of f at \mathbf{a}.
Example If $f(x, y, z)=x y z-10 x^{2}$, then

$$
\nabla f(x, y, z)=(y z-20 x, x z, x y)
$$

and, for example,

$$
\nabla f(1,-1,2)=(-22,2,-1)
$$

Note that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then $\nabla: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Such functions are called vector fields. Moreover, note that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at \mathbf{a}, then

$$
d f_{\mathbf{a}}(\mathbf{x})=\nabla f(\mathbf{a}) \cdot \mathbf{x}
$$

14.2 The chain rule

Recall: If $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at a and $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at $\varphi(a)$, then $f \circ \varphi$ is differentiable at a and

$$
(f \circ \varphi)^{\prime}(a)=f^{\prime}(\varphi(a)) \varphi^{\prime}(a)
$$

Chain Rule If $\varphi: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is differentiable at a and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at $\varphi(a)$, then $f \circ \varphi$ is differentiable at a and

$$
(f \circ \varphi)^{\prime}(a)=\nabla f(\varphi(a)) \cdot \varphi^{\prime}(a)
$$

Sketch of proof We need to show that

$$
\lim _{h \rightarrow 0} \frac{f(\varphi(a+h))-f(\varphi(a))-\left(\nabla f(\varphi(a)) \cdot \varphi^{\prime}(a)\right) h}{h}=0
$$

Let $\mathbf{s}=\varphi(a+h)-\varphi(a)$. Then

$$
\begin{aligned}
\frac{f(\varphi(a+h))-}{} & f(\varphi(a))-\left(\nabla f(\varphi(a)) \cdot \varphi^{\prime}(a)\right) h \\
h & \frac{f(\varphi(a)+\mathbf{s})-f(\varphi(a))-\left(\nabla f(\varphi(a)) \cdot \varphi^{\prime}(a)\right) h}{|\mathbf{s}|} \frac{|\mathbf{s}|}{h} .
\end{aligned}
$$

Now

$$
\varphi^{\prime}(a) h \approx \varphi(a+h)-\varphi(a)=\mathbf{s}
$$

so the first factor in the above becomes, approximately,

$$
\frac{f(\varphi(a)+\mathbf{s})-f(\varphi(a))-\nabla f(\varphi(a)) \cdot \mathbf{s}}{|\mathbf{s}|}
$$

which goes to 0 as \mathbf{s} goes to $\mathbf{0}$ by the differentiability of f. Moreover, s goes to $\mathbf{0}$ as h goes to 0 by the continuity of φ. Finally,

$$
\frac{|\mathbf{s}|}{h}
$$

approaches $\left|\varphi^{\prime}(a)\right|$ as h approaches 0 through positive values and $-\left|\varphi^{\prime}(a)\right|$ as h approaches 0 through negative values. Hence our original limit approaches 0 as h goes to 0 .

Example Suppose a metal plate is heated in such a way that the temperature at point (x, y) is given by

$$
T(x, y)=100 x y e^{-\frac{1}{20}\left(x^{2}+y^{2}\right)}
$$

Moreover, suppose a bug moves along the plate with position at time t given by

$$
\varphi(t)=(2 \cos (t), \sin (t))
$$

Now

$$
\begin{gathered}
\frac{\partial}{\partial x} T(x, y)=-10 x^{2} y e^{-\frac{1}{20}\left(x^{2}+y^{2}\right)}+100 y e^{-\frac{1}{20}\left(x^{2}+y^{2}\right)}=10\left(10 y-x^{2} y\right) e^{-\frac{1}{20}\left(x^{2}+y^{2}\right)} \\
\frac{\partial}{\partial x} T(x, y)=-10 x y^{2} e^{-\frac{1}{20}\left(x^{2}+y^{2}\right)}+100 x e^{-\frac{1}{20}\left(x^{2}+y^{2}\right)}=10\left(10 x-x y^{2}\right) e^{-\frac{1}{20}\left(x^{2}+y^{2}\right)} \\
\nabla T(x, y)=10 e^{-\frac{1}{20}\left(x^{2}+y^{2}\right)}\left(10 y-x^{2} y, 10 x-x y^{2}\right)
\end{gathered}
$$

and

$$
\varphi^{\prime}(t)=(-2 \sin (t), \cos (t))
$$

Hence, for example, at time $t=\frac{\pi}{4}$,

$$
\varphi\left(\frac{\pi}{4}\right)=\left(\sqrt{2}, \frac{1}{\sqrt{2}}\right)
$$

$$
\begin{gathered}
\varphi^{\prime}\left(\frac{\pi}{4}\right)=\left(-\sqrt{2}, \frac{1}{\sqrt{2}}\right) \\
\nabla T\left(\sqrt{2}, \frac{1}{\sqrt{2}}\right)=10 e^{-\frac{1}{8}}\left(\frac{10}{\sqrt{2}}-\sqrt{2}, 10 \sqrt{2}-\frac{1}{\sqrt{2}}\right)
\end{gathered}
$$

and so if $g(t)=T(\varphi(t))$, then

$$
g^{\prime}\left(\frac{\pi}{4}\right)=10 e^{-\frac{1}{8}}\left(-10+2+10-\frac{1}{2}\right)=15 e^{-\frac{1}{8}} \approx 13.24
$$

Put another way,

$$
\left.\frac{d T}{d t}\right|_{t=\frac{\pi}{4}} \approx 13.24
$$

Note that in the previous example, if we let $x=2 \cos (t)$ and $y=\sin (t)$, then we have

$$
\frac{d T}{d t}=\frac{\partial T}{\partial x} \frac{d x}{d t}+\frac{\partial T}{\partial y} \frac{d y}{d t}
$$

More generally, if $z=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $x_{1}=f_{1}(t), x_{2}=f_{2}(t), \ldots, x_{n}=f_{n}(t)$, then

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x_{1}} \frac{d x_{1}}{d t}+\frac{\partial z}{\partial x_{2}} \frac{d x_{2}}{d t}+\cdots+\frac{\partial z}{\partial x_{n}} \frac{d x_{n}}{d t} .
$$

Example Suppose $w=x^{2}-y^{2}+z^{2}, x=3 t+4, y=t^{2}+1$, and $z=4 t^{3}$. Then

$$
\begin{aligned}
\frac{d w}{d t} & =\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t} \\
& =(2 x)(3)-(2 y)(2 t)+(2 z)\left(12 t^{2}\right) \\
& =6 x-4 y t+24 z t^{2}
\end{aligned}
$$

For example, when $t=1, x=7, y=2$, and $z=4$, so

$$
\left.\frac{d w}{d t}\right|_{t=1}=42-8+96=130
$$

More generally, if u is a function of $x_{1}, x_{2}, \ldots, x_{n}$ and, for $k=1,2, \ldots, n, x_{k}$ is a function of $t_{1}, t_{2}, \ldots, t_{m}$, then, for $i=1,2, \ldots, m$,

$$
\frac{\partial u}{\partial t_{i}}=\frac{\partial u}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{i}}+\frac{\partial u}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{i}}+\cdots+\frac{\partial u}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{i}} .
$$

Example Suppose $u=4 x^{2} y^{2}, x=t^{2}-s^{2}$, and $y=20 t s$. Then

$$
\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial t}=\left(8 x y^{2}\right)(2 t)+\left(8 x^{2} y\right)(20 s)=16 x y^{2} t+160 x^{2} y s
$$

and

$$
\frac{\partial u}{\partial s}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial s}=\left(8 x y^{2}\right)(-2 s)+\left(8 x^{2} y\right)(20 t)=-16 x y^{2} s+160 x^{2} y t
$$

