Lecture 13: Derivatives

13.1 Partial derivatives do not imply differentiability

Recall that for functions $f: \mathbb{R} \rightarrow \mathbb{R}$, differentiability is a stronger condition than continuity. That is, if f is differentiable at a, then f is continuous at a. Geometrically, you cannot hope to have a tangent line at a point on the graph of f if the curve is not even continuous. Similarly, we would not want to say a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at a point if the graph of f has a tear, and hence does not have a tangent plane, at the given point. Now if

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

then f is not continuous at $(0,0)$ (we showed earlier that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist), even though both $f_{x}(0,0)$ and $f_{y}(0,0)$ exist:

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=0
$$

and

$$
f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=0 .
$$

Hence for functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the existence of partial derivatives is not enough to ensure that a function is differentiable.

13.2 The idea of a derivative

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at a. We often think of

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

as the slope of the graph of f at a. This idea of a derivative does not generalize well to higher dimensions since, as we have seen, the graph of a function of several variables may have different slopes depending on the direction chosen. On the other hand, consider the linear function $L(x)=f^{\prime}(a) x$. Then L has the property that

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-L(h)}{h}=\lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h}-f^{\prime}(a)\right)=f^{\prime}(a)-f^{\prime}(a)=0
$$

Definition We call a function $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ linear if there exist scalars $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
L\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{n}+a_{2} x_{2}+\ldots+a_{n} x_{n}
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in \mathbb{R}^{n}.
Definition We say a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at a point a if there exists a linear function $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-L(\mathbf{h})}{|h|}=0
$$

in which case we call L the derivative or differential of f, often denoted $d f_{\mathbf{a}}$.
Now if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at a point $\mathbf{a}=\left(a_{1}, a_{2}\right)$, then

$$
\begin{aligned}
\mathbf{n}\left(a_{1}, a_{2}\right) & =\left(1,0, \frac{\partial}{\partial x} f\left(a_{1}, a_{2}\right)\right) \times\left(0,1, \frac{\partial}{\partial y} f\left(a_{1}, a_{2}\right)\right) \\
& =\left(-\frac{\partial}{\partial x} f\left(a_{1}, a_{2}\right),-\frac{\partial}{\partial y} f\left(a_{1}, a_{2}\right), 1\right)
\end{aligned}
$$

should be a normal vector for the plane tangent to the graph of f at $\left(a_{1}, a_{2}, f\left(a_{1}, a_{2}\right)\right)$. That is, the equation of the tangent plane should be

$$
\mathbf{n}\left(a_{1}, a_{2}\right) \cdot\left(x-a_{1}, y-a_{2}, z-f\left(a_{1}, a_{2}\right)\right)=0
$$

which simplifies to

$$
z=f\left(a_{1}, a_{2}\right)+\frac{\partial}{\partial x} f\left(a_{1}, a_{2}\right)\left(x-a_{1}\right)+\frac{\partial}{\partial x} f\left(a_{1}, a_{2}\right)\left(y-a_{2}\right)
$$

This motivates a guess as to what the derivative of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ should be if one exists.

Theorem If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has continuous partial derivatives on an open disk centered at $\mathbf{a}=\left(a_{1}, a_{2}\right)$, then f is differentiable at \mathbf{a}. Moreover,

$$
d f_{\mathbf{a}}(x, y)=\frac{\partial f}{\partial x}\left(a_{1}, a_{2}\right) x+\frac{\partial f}{\partial y}\left(a_{1}, a_{2}\right) y
$$

Proof Let $\mathbf{h}=\left(h_{1}, h_{2}\right)$ and define $L: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
L(x, y)=\frac{\partial f}{\partial x}\left(a_{1}, a_{2}\right) x+\frac{\partial f}{\partial y}\left(a_{1}, a_{2}\right) y
$$

Now

$$
\begin{aligned}
f(\mathbf{a}+\mathbf{h})-f(\mathbf{a}) & =f\left(a_{1}+h_{1}, a_{2}+h_{2}\right)-f\left(a_{1}, a_{2}\right) \\
& =\left(f\left(a_{1}+h_{1}, a_{2}+h_{2}\right)-f\left(a_{1}+h_{1}, a_{2}\right)\right)+\left(f\left(a_{1}+h_{1}, a_{2}\right)-f\left(a_{1}, a_{2}\right)\right)
\end{aligned}
$$

Using the mean value theorem from single-variable calculus, we know that there is a c_{1} between 0 and h_{1} and a c_{2} between 0 and h_{2} such that

$$
f\left(a_{1}+h_{1}, a_{2}\right)-f\left(a_{1}, a_{2}\right)=\frac{\partial}{\partial x} f\left(a_{1}+c_{1}, a_{2}\right) h_{1}
$$

and

$$
f\left(a_{1}+h_{1}, a_{2}+h_{2}\right)-f\left(a_{1}+h_{1}, a_{2}\right)=\frac{\partial}{\partial y} f\left(a_{1}+h_{1}, a_{2}+c_{2}\right) h_{2}
$$

Hence

$$
\begin{aligned}
f\left(a_{1}+h_{1}, a_{2}+h_{2}\right)-f\left(a_{1}, a_{2}\right)-L\left(h_{1}, h_{2}\right)= & \left(\frac{\partial}{\partial y} f\left(a_{1}+h_{1}, a_{2}+c_{2}\right)-\frac{\partial}{\partial y} f\left(a_{1}, a_{2}\right)\right) h_{2} \\
& +\left(\frac{\partial}{\partial x} f\left(a_{1}+c_{1}, a_{2}\right)-\frac{\partial}{\partial x} f\left(a_{1}, a_{2}\right)\right) h_{1}
\end{aligned}
$$

and so

$$
\begin{aligned}
& \left|f\left(a_{1}+h_{1}, a_{2}+h_{2}\right)-f\left(a_{1}, a_{2}\right)-L\left(h_{1}, h_{2}\right)\right| \\
& \quad \leq\left|\left(\frac{\partial}{\partial x} f\left(a_{1}+c_{1}, a_{2}\right)-\frac{\partial}{\partial x} f\left(a_{1}, a_{2}\right), \frac{\partial}{\partial y} f\left(a_{1}+h_{1}, a_{2}+c_{2}\right)-\frac{\partial}{\partial y} f\left(a_{1}, a_{2}\right)\right)\right|\left|\left(h_{1}, h_{2}\right)\right| .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left|\frac{f\left(a_{1}+h_{1}, a_{2}+h_{2}\right)-f\left(a_{1}, a_{2}\right)-L\left(h_{1}, h_{2}\right)}{\left|\left(h_{1}, h_{2}\right)\right|}\right| \\
& \leq\left|\left(\frac{\partial}{\partial x} f\left(a_{1}+c_{1}, a_{2}\right)-\frac{\partial}{\partial x} f\left(a_{1}, a_{2}\right), \frac{\partial}{\partial y} f\left(a_{1}+h_{1}, a_{2}+c_{2}\right)-\frac{\partial}{\partial y} f\left(a_{1}, a_{2}\right)\right)\right|
\end{aligned}
$$

Since the partial derivatives are continuous, we have

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}}\left(\frac{\partial}{\partial x} f\left(a_{1}+c_{1}, a_{2}\right)-\frac{\partial}{\partial x} f\left(a_{1}, a_{2}\right)\right)=0
$$

and

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}}\left(\frac{\partial}{\partial y} f\left(a_{1}+h_{1}, a_{2}+c_{2}\right)-\frac{\partial}{\partial y} f\left(a_{1}, a_{2}\right)\right)=0
$$

Hence

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-L(\mathbf{h})}{|\mathbf{h}|}=0
$$

and so f is differentiable with derivative L.
In general, we have the following result.

Theorem If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has continuous partial derivatives on an open ball centered at \mathbf{a}, then f is differentiable at \mathbf{a}. Moreover,

$$
d f_{\mathbf{a}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\partial f}{\partial x_{1}}(\mathbf{a}) x_{1}+\frac{\partial f}{\partial x_{2}}(\mathbf{a}) x_{2}+\cdots+\frac{\partial f}{\partial x_{n}}(\mathbf{a}) x_{n}
$$

13.3 Linear approximations

Definition If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, then we call the function $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
L\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f(\mathbf{a})+\frac{\partial f}{\partial x_{1}}(\mathbf{a})\left(x_{1}-a_{1}\right)+\frac{\partial f}{\partial x_{2}}(\mathbf{a})\left(x_{2}-a_{2}\right)+\cdots+\frac{\partial f}{\partial x_{n}}(\mathbf{a})\left(x_{n}-a_{n}\right)
$$

the linearization of f at \mathbf{a}.
Example If $f(x, y, z)=\ln \left(x^{2}+y^{2}+z^{2}\right)$, then

$$
\begin{aligned}
\frac{\partial}{\partial x} f(x, y, z) & =\frac{2 x}{x^{2}+y^{2}+z^{2}} \\
\frac{\partial}{\partial y} f(x, y, z) & =\frac{2 y}{x^{2}+y^{2}+z^{2}}
\end{aligned}
$$

and

$$
\frac{\partial}{\partial z} f(x, y, z)=\frac{2 z}{x^{2}+y^{2}+z^{2}}
$$

Hence

$$
\begin{aligned}
\frac{\partial}{\partial x} f(1,2,-2) & =\frac{2}{9} \\
\frac{\partial}{\partial y} f(1,2,-2) & =\frac{4}{9}
\end{aligned}
$$

and

$$
\frac{\partial}{\partial z} f(1,2,-2)=-\frac{4}{9}
$$

so the linearization of f at $(1,2,-2)$ is

$$
L(x, y, z)=\ln (9)+\frac{2}{9}(x-1)+\frac{4}{9}(y-2)-\frac{4}{9}(z+2) .
$$

For example, we might estimate

$$
f(1.1,1.9,-2.1) \approx L(1.1,1.9,-2.1)=\ln (3)+\frac{2}{90}-\frac{4}{90}+\frac{4}{90}=\ln (3)+\frac{2}{90}
$$

13.4 Tangent planes

Definition If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at (a, b), then we call the graph of the linearization of f at (a, b) the tangent plane to the graph of f at $(a, b, f(a, b))$.

Example If $f(x, y)=9-x^{2}-y^{2}$, then

$$
\frac{\partial}{\partial x} f(x, y)=-2 x
$$

and

$$
\frac{\partial}{\partial y} f(x, y)=-2 y
$$

So

$$
\frac{\partial}{\partial x} f(1,2)=-2
$$

and

$$
\frac{\partial}{\partial x} f(1,2)=-4
$$

So the linearization of f at $(1,2)$ is

$$
L(x, y)=4-2(x-1)-4(y-2)=14-2 x-4 y
$$

Hence the tangent plane to the graph of f at $(1,2,4)$ has equation

$$
z=14-2 x-4 y
$$

Graph of $f(x, y)=9-x^{2}-y^{2}$ with tangent plane at $(1,2,4)$

