
Lecture 13: Derivatives

13.1 Partial derivatives do not imply differentiability

Recall that for functions f : R→ R, differentiability is a stronger condition than continuity.
That is, if f is differentiable at a, then f is continuous at a. Geometrically, you cannot
hope to have a tangent line at a point on the graph of f if the curve is not even continuous.
Similarly, we would not want to say a function f : R2 → R is differentiable at a point if
the graph of f has a tear, and hence does not have a tangent plane, at the given point.
Now if

f(x, y) =


xy

x2 + y2
, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0)
,

then f is not continuous at (0, 0) (we showed earlier that lim
(x,y)→(0,0)

f(x, y) does not exist),

even though both fx(0, 0) and fy(0, 0) exist:

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)
h

= lim
h→0

0
h

= 0

and

fy(0, 0) = lim
h→0

f(0, h)− f(0, 0)
h

= lim
h→0

0
h

= 0.

Hence for functions f : Rn → R, the existence of partial derivatives is not enough to ensure
that a function is differentiable.

13.2 The idea of a derivative

Suppose f : R→ R is differentiable at a. We often think of

f ′(a) = lim
h→0

f(a+ h)− f(a)
h

as the slope of the graph of f at a. This idea of a derivative does not generalize well to
higher dimensions since, as we have seen, the graph of a function of several variables may
have different slopes depending on the direction chosen. On the other hand, consider the
linear function L(x) = f ′(a)x. Then L has the property that

lim
h→0

f(a+ h)− f(a)− L(h)
h

= lim
h→0

(
f(a+ h)− f(a)

h
− f ′(a)

)
= f ′(a)− f ′(a) = 0.

Definition We call a function L : Rn → R linear if there exist scalars a1, a2, . . . , an
such that

L(x1, x2, . . . , xn) = a1xn + a2x2 + . . .+ anxn
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for all (x1, x2, . . . , xn) in Rn.

Definition We say a function f : Rn → R is differentiable at a point a if there exists a
linear function L : Rn → R such that

lim
h→0

f(a + h)− f(a)− L(h)
|h|

= 0,

in which case we call L the derivative or differential of f , often denoted dfa.

Now if f : R2 → R is differentiable at a point a = (a1, a2), then

n(a1, a2) =
(

1, 0,
∂

∂x
f(a1, a2)

)
×
(

0, 1,
∂

∂y
f(a1, a2)

)
=
(
− ∂

∂x
f(a1, a2),− ∂

∂y
f(a1, a2), 1

)
.

should be a normal vector for the plane tangent to the graph of f at (a1, a2, f(a1, a2)).
That is, the equation of the tangent plane should be

n(a1, a2) · (x− a1, y − a2, z − f(a1, a2)) = 0,

which simplifies to

z = f(a1, a2) +
∂

∂x
f(a1, a2)(x− a1) +

∂

∂x
f(a1, a2)(y − a2).

This motivates a guess as to what the derivative of a function f : R2 → R should be if one
exists.

Theorem If f : R2 → R has continuous partial derivatives on an open disk centered at
a = (a1, a2), then f is differentiable at a. Moreover,

dfa(x, y) =
∂f

∂x
(a1, a2)x+

∂f

∂y
(a1, a2)y.

Proof Let h = (h1, h2) and define L : R2 → R by

L(x, y) =
∂f

∂x
(a1, a2)x+

∂f

∂y
(a1, a2)y.

Now

f(a + h)− f(a) = f(a1 + h1, a2 + h2)− f(a1, a2)
= (f(a1 + h1, a2 + h2)− f(a1 + h1, a2)) + (f(a1 + h1, a2)− f(a1, a2)).
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Using the mean value theorem from single-variable calculus, we know that there is a c1
between 0 and h1 and a c2 between 0 and h2 such that

f(a1 + h1, a2)− f(a1, a2) =
∂

∂x
f(a1 + c1, a2)h1

and

f(a1 + h1, a2 + h2)− f(a1 + h1, a2) =
∂

∂y
f(a1 + h1, a2 + c2)h2.

Hence

f(a1 + h1, a2 + h2)− f(a1, a2)− L(h1, h2) =
(
∂

∂y
f(a1 + h1, a2 + c2)− ∂

∂y
f(a1, a2)

)
h2

+
(
∂

∂x
f(a1 + c1, a2)− ∂

∂x
f(a1, a2)

)
h1,

and so

|f(a1 + h1, a2 + h2)− f(a1, a2)− L(h1, h2)|

≤
∣∣∣∣( ∂

∂x
f(a1 + c1, a2)− ∂

∂x
f(a1, a2),

∂

∂y
f(a1 + h1, a2 + c2)− ∂

∂y
f(a1, a2)

)∣∣∣∣ |(h1, h2)|.

Hence ∣∣∣∣f(a1 + h1, a2 + h2)− f(a1, a2)− L(h1, h2)
|(h1, h2)|

∣∣∣∣
≤
∣∣∣∣( ∂

∂x
f(a1 + c1, a2)− ∂

∂x
f(a1, a2),

∂

∂y
f(a1 + h1, a2 + c2)− ∂

∂y
f(a1, a2)

)∣∣∣∣ .
Since the partial derivatives are continuous, we have

lim
h→0

(
∂

∂x
f(a1 + c1, a2)− ∂

∂x
f(a1, a2)

)
= 0

and

lim
h→0

(
∂

∂y
f(a1 + h1, a2 + c2)− ∂

∂y
f(a1, a2)

)
= 0.

Hence

lim
h→0

f(a + h)− f(a)− L(h)
|h|

= 0,

and so f is differentiable with derivative L.

In general, we have the following result.
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Theorem If f : Rn → R has continuous partial derivatives on an open ball centered at
a, then f is differentiable at a. Moreover,

dfa(x1, x2, . . . , xn) =
∂f

∂x1
(a)x1 +

∂f

∂x2
(a)x2 + · · ·+ ∂f

∂xn
(a)xn.

13.3 Linear approximations

Definition If f : Rn → R is differentiable at a = (a1, a2, . . . , an), then we call the
function L : Rn → R defined by

L(x1, x2, . . . , xn) = f(a) +
∂f

∂x1
(a)(x1 − a1) +

∂f

∂x2
(a)(x2 − a2) + · · ·+ ∂f

∂xn
(a)(xn − an)

the linearization of f at a.

Example If f(x, y, z) = ln(x2 + y2 + z2), then

∂

∂x
f(x, y, z) =

2x
x2 + y2 + z2

,

∂

∂y
f(x, y, z) =

2y
x2 + y2 + z2

,

and
∂

∂z
f(x, y, z) =

2z
x2 + y2 + z2

.

Hence
∂

∂x
f(1, 2,−2) =

2
9
,

∂

∂y
f(1, 2,−2) =

4
9
,

and
∂

∂z
f(1, 2,−2) = −4

9
,

so the linearization of f at (1, 2,−2) is

L(x, y, z) = ln(9) +
2
9

(x− 1) +
4
9

(y − 2)− 4
9

(z + 2).

For example, we might estimate

f(1.1, 1.9,−2.1) ≈ L(1.1, 1.9,−2.1) = ln(3) +
2
90
− 4

90
+

4
90

= ln(3) +
2
90
.
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13.4 Tangent planes

Definition If f : R2 → R is differentiable at (a, b), then we call the graph of the
linearization of f at (a, b) the tangent plane to the graph of f at (a, b, f(a, b)).

Example If f(x, y) = 9− x2 − y2, then
∂

∂x
f(x, y) = −2x

and
∂

∂y
f(x, y) = −2y,

so
∂

∂x
f(1, 2) = −2

and
∂

∂x
f(1, 2) = −4.

So the linearization of f at (1, 2) is

L(x, y) = 4− 2(x− 1)− 4(y − 2) = 14− 2x− 4y.

Hence the tangent plane to the graph of f at (1, 2, 4) has equation

z = 14− 2x− 4y.
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Graph of f(x, y) = 9− x2 − y2 with tangent plane at (1, 2, 4)


