Lecture 12: Directional and Partial Derivatives

12.1 Directional derivatives

Definition Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, \mathbf{x} is a point in the domain of f, and \mathbf{u} is a unit vector in \mathbb{R}^{n}. Providing the limit exists, we call

$$
D_{\mathbf{u}} f(\mathbf{x})=\lim _{h \rightarrow 0} \frac{f(\mathbf{x}+h \mathbf{u})-f(\mathbf{x})}{h}
$$

the directional derivative of f in the direction of \mathbf{u}.
Example If $f(x, y)=4-x^{2}-y^{2}$ and

$$
\mathbf{u}=\frac{1}{\sqrt{2}}(-1,-1)
$$

then

$$
\begin{aligned}
D_{\mathbf{u}} f(1,1) & =\lim _{h \rightarrow 0} \frac{f((1,1)+h \mathbf{u})-f(1,1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(4-\left(1-\frac{h}{\sqrt{2}}\right)^{2}-\left(1-\frac{h}{\sqrt{2}}\right)^{2}-2\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(4-2\left(1-\sqrt{2} h+\frac{h^{2}}{2}\right)-2\right) \\
& =\lim _{h \rightarrow 0}(2 \sqrt{2}-h) \\
& =2 \sqrt{2} .
\end{aligned}
$$

The figure below shows the graph of f along with the curve above the point $(1,1)$ in the $x y$-plane in the direction of \mathbf{u}.

12.2 Partial derivatives

Definition Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and let $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ be the standard basis vectors for \mathbb{R}^{n}. If $D_{\mathbf{e}_{k}} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ exists, then we call $D_{\mathbf{e}_{k}} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ the partial derivative of f with respect to x_{k}.

Notations for $D_{\mathbf{e}_{k}} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ include:

$$
\begin{gathered}
D_{x_{k}} f\left(x_{1}, x_{2}, \ldots, x_{n}\right), \\
D_{k} f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
f_{x_{k}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \text { Graph of } f(x, y)=4-x^{2}-y^{2} \\
& \qquad f_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

and

$$
\frac{\partial}{\partial x_{k}} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Then

$$
f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f((x, y)+h(1,0))-f(x, y)}{h}=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

If, fixing y, we let $g(x)=f(x, y)$, then

$$
f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=g^{\prime}(x) .
$$

That is, we may compute f_{x} by treating y as fixed and differentiating with respect to x. A similar comment holds for all partial derivatives: to find the partial derivative of
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with respect to x_{k}, treat the other variables as fixed and differentiate with respect to x_{k} as you would a function of one variable.

Example If $f(x, y)=4-x^{2}-y^{2}$, then

$$
f_{x}(x, y)=-2 x
$$

and

$$
f_{y}(x, y)=-2 y
$$

Hence, for example, $f_{x}(1,1)=-2$ and $f_{y}(x, y)=-2$. The figure below illustrates these slopes.

$$
\text { Graph of } f(x, y)=4-x^{2}-y^{2}
$$

Example If $f(x, y)=x \sin (x y)$, then

$$
f_{x}(x, y)=x y \cos (x y)+\sin (x y)
$$

and

$$
f_{y}(x, y)=x^{2} \cos (x y)
$$

Example If $w=\ln \left(x^{2}+y^{2}+z^{2}\right)$, then

$$
\frac{\partial w}{\partial x}=\frac{2 x}{x^{2}+y^{2}+z^{2}}
$$

12.3 Higher order partial derivatives

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then any partial derivative of f is also a function from \mathbb{R}^{n} to \mathbb{R}. Hence we may evaluate partial derivatives of a partial derivative.

Notation: If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, then we may write

$$
\begin{aligned}
f_{x x}(x, y) & =\frac{\partial^{2}}{\partial x^{2}} f(x, y) \\
f_{x y}(x, y) & =\frac{\partial^{2}}{\partial y \partial x} f(x, y) \\
f_{y x}(x, y) & =\frac{\partial^{2}}{\partial x \partial y} f(x, y)
\end{aligned}
$$

and

$$
f_{y y}(x, y)=\frac{\partial^{2}}{\partial y^{2}} f(x, y)
$$

Similar notation applies to higher order derivatives and for functions of more variables.
Example If $f(x, y, z)=4 x^{2} y z-8 x y^{2} z^{3}$, then, for example

$$
\begin{gathered}
f_{x}(x, y, z)=8 x y z-8 y^{2} z^{3} \\
f_{x y}(x, y, z)=8 x z-16 y z^{3} \\
f_{y}(x, y, z)=4 x^{2} z-16 x y z^{3} \\
f_{y x}(x, y, z)=8 x z-16 y z^{3}
\end{gathered}
$$

and

$$
f_{y y}(x, y, z)=-16 x z^{3}
$$

for the second-order partial derivatives.
Note that in the previous example $f_{x y}(x, y, z)=f_{y x}(x, y, z)$. Equality of mixed partials does not hold in general, but will under the conditions of the next theorem.

Theorem Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. If, for any i and $k, f_{x_{i} x_{k}}$ and $f_{x_{k} x_{i}}$ are both continuous, then

$$
f_{x_{i} x_{k}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{x_{k} x_{i}}\left(x_{1}, x_{2}, \ldots, x_{k}\right)
$$

