Lecture 11: Limits and Continuity

11.1 Limits

Definition Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. We say the limit of $f(\mathbf{x})$ as \mathbf{x} approaches \mathbf{a} is L, denoted $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=L$, if for every $\epsilon>0$ there exists $\delta>0$ such that

$$
|f(\mathbf{x})-L|<\epsilon
$$

whenever

$$
0<|\mathbf{x}-\mathbf{a}|<\delta
$$

Proposition If $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=L, \lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=M$, and c is a scalar, then

$$
\begin{gathered}
\lim _{\mathbf{x} \rightarrow \mathbf{a}} c f(\mathbf{x})=c L \\
\lim _{\mathbf{x} \rightarrow \mathbf{a}}(f(\mathbf{x})+g(\mathbf{x}))=L+M \\
\lim _{\mathbf{x} \rightarrow \mathbf{a}}(f(\mathbf{x})-g(\mathbf{x}))=L-M \\
\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x}) g(\mathbf{x})=L M \\
\lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{f(\mathbf{x})}{g(\mathbf{x})}=\frac{L}{M}, \text { provided } M \neq 0
\end{gathered}
$$

and

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}}(f(\mathbf{x}))^{c}=L^{c}
$$

Example If $f(x, y, z)=x$, then we should have

$$
\lim _{(x, y, z) \rightarrow(1,2,3)} f(x, y, z)=1
$$

To verify this, we need to show that for any $\epsilon>0$ there exists a $\delta>0$ such that $|x-1|<\epsilon$ whenever

$$
|(x, y, z)-(1,2,3)|<\delta
$$

Now

$$
|(x, y, z)-(1,2,3)|=\sqrt{(x-1)^{2}+(y-2)^{2}+(z-3)^{2}} \geq|x-1|
$$

Hence $|x-1|<\epsilon$ whenever

$$
|(x, y, z)-(1,2,3)|<\epsilon .
$$

That is, we may take $\delta=\epsilon$.

In general, if $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{k}, k=1,2, \ldots, n$, and $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, then

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{k}
$$

Also note that for any scalar c and vector a in \mathbb{R}^{n},

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} c=c
$$

A function of the form

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{n}^{m_{n}}
$$

where c is any scalar and $m_{1}, m_{2}, \ldots, m_{n}$ are nonnegative integers, is called a monomial. A polynomial is a sum of monomials and a rational function is a ratio of polynomials.

Proposition If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a rational function, then for any a in the domain of f,

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=f(\mathbf{a})
$$

Example $\lim _{(x, y) \rightarrow(3,2)} \frac{x^{2} y-4 x y}{16 x-4 y}=\frac{18-24}{48-8}=-\frac{6}{40}=-\frac{3}{20}$.

Recall that for a function $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\lim _{x \rightarrow a} f(x)=L
$$

if and only if

$$
\lim _{x \rightarrow a^{-}} f(x)=L \text { and } \lim _{x \rightarrow a^{+}} f(x)=L
$$

Similarly, for a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we have the following: Suppose $\varphi: \mathbb{R} \rightarrow \mathbb{R}^{n}$ and $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{n}$ parametrize curves in \mathbb{R}^{n} with

$$
\lim _{t \rightarrow b} \varphi(t)=\mathbf{a}
$$

and

$$
\lim _{t \rightarrow c} \alpha(t)=\mathbf{a} .
$$

If

$$
\lim _{t \rightarrow b} f(\varphi(t)) \neq \lim _{t \rightarrow c} f(\alpha(t))
$$

then $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})$ does not exist.

Example Suppose

$$
f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

Then

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=0}} f(x, y)=\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}}=1
$$

and

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ x=0}} f(x, y)=\lim _{x \rightarrow 0} \frac{-y^{2}}{y^{2}}=-1
$$

so

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

does not exist.

$$
\text { Graph of } f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

Example For

$$
f(x, y)=\frac{x y}{x^{2}+y^{2}}
$$

we have

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=0}} f(x, y)=\lim _{x \rightarrow 0} \frac{0}{x^{2}}=0
$$

and

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ x=0}} f(x, y)=\lim _{x \rightarrow 0} \frac{0}{y^{2}}=0
$$

which does not help determine whether or not the limit exists. However,

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ x=y}} f(x, y)=\lim _{x \rightarrow 0} \frac{x^{2}}{2 x^{2}}=\frac{1}{2}
$$

so

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}
$$

does not exist.

$$
\text { Graph of } f(x, y)=\frac{x y}{x^{2}+y^{2}}
$$

Example For

$$
f(x, y)=\frac{x y^{2}}{4 x^{2}+y^{4}}
$$

we have

$$
\lim _{\substack{(x, y)(0,0) \\ y=0}} f(x, y)=\lim _{x \rightarrow 0} \frac{0}{4 x^{2}}=0
$$

and

$$
\lim _{\substack{(x, y) \rightarrow 0,0) \\ x=0}} f(x, y)=\lim _{x \rightarrow 0} \frac{0}{y^{4}}=0
$$

Indeed, for any real number m,

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=m x}} f(x, y)=\lim _{x \rightarrow 0} \frac{m^{2} x^{3}}{4 x^{2}+m^{4} x^{4}}=\lim _{x \rightarrow 0} \frac{m^{2} x}{4+m^{4} x^{2}}=\frac{0}{4}=0 .
$$

Hence the limit of $f(x, y)$ as (x, y) approaches 0 along any line through the origin is 0 . However,

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ x=y^{2}}} f(x, y)=\lim _{x \rightarrow 0} \frac{y^{4}}{5 y^{4}}=\frac{1}{5}
$$

and so

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{4 x^{2}+y^{4}}
$$

does not exist.

$$
\text { Graph of } f(x, y)=\frac{x y^{2}}{4 x^{2}+y^{4}}
$$

It is sometimes useful in evaluating limits to make use of the fact that for any $\mathbf{x}=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in \mathbb{R}^{n},

$$
|\mathbf{x}|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}} \geq \sqrt{x_{k}^{2}}=\left|x_{k}\right|
$$

for any $k=1,2, \ldots, n$.
Example Consider

$$
f(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}
$$

Let $\mathbf{x}=(x, y)$. Then

$$
|f(x, y)|=\frac{|x|^{2}|y|}{|\mathbf{x}|^{2}} \leq \frac{|\mathbf{x}|^{2}|\mathbf{x}|}{|\mathbf{x}|^{2}}=|\mathbf{x}|
$$

Now

$$
\lim _{(x, y) \rightarrow(0,0)}|\mathbf{x}|=\lim _{(x, y) \rightarrow(0,0)} \sqrt{x^{2}+y^{2}}=0,
$$

so we must have

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}=0
$$

$$
\text { Graph of } f(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}
$$

11.2 Continuity

Definition We say a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous at a point a if $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=f(\mathbf{a})$.
The following propositions follow directly from the similar proposition concerning limits.
Proposition If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are continuous at a and c is a scalar, then the functions which take the following values at \mathbf{x} are also continuous at \mathbf{a} :

$$
\begin{gathered}
f(\mathbf{x})+g(\mathbf{x}) \\
f(\mathbf{x})-g(\mathbf{x}) \\
c f(\mathbf{x}) \\
f(\mathbf{x}) g(\mathbf{x}) \\
\frac{f(\mathbf{x})}{g(\mathbf{x})}, \text { provided } g(\mathbf{a}) \neq 0
\end{gathered}
$$

and

$$
f(\mathbf{x})^{c} .
$$

Moreover, if $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $f(\mathbf{a})$, then $\varphi \circ f$ is continuous at a.
Proposition If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a rational function, then f is continuous at every point in its domain.

Example The function

$$
f(x, y, z)=\sin \left(\pi \sqrt{x^{2}+y^{2}+z^{2}}\right)
$$

is continuous at every point in \mathbb{R}^{3}. We also phrase this by saying f is continuous on \mathbb{R}^{3}. For example, this means that

$$
\lim _{(x, y, z) \rightarrow(1,2,2)} \sin \left(\pi \sqrt{x^{2}+y^{2}+z^{2}}\right)=\sin (\pi \sqrt{1+4+4})=\sin (3 \pi)=0
$$

