Lecture 10: Functions from \mathbb{R}^{n} to \mathbb{R}

10.1 Graphs

Definition The graph of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the set

$$
\left\{\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right): x_{n+1}=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\} .
$$

Note that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then the graph of f is in \mathbb{R}^{n+1}. Hence we may visualize the graph of f only when $n=1$, in which case the graph is a curve in \mathbb{R}^{2}, or $n=2$, in which case the graph is a surface in \mathbb{R}^{3}.

Example The graph of $f(x, y)=x^{2}+y^{2}$ is an example of a paraboloid. Note that if we fix a value of x, say $x=c$, then the curve above the line $x=c$ in the $x y$-plane is a parabola, namely, the graph of $z=y^{2}+c^{2}$. Similarly, the curve above the line $y=c$ is the parabola $z=x^{2}+c^{2}$. Moreover, if we slice the graph of f with the plane $z=c$, where $c>0$, the resulting curve is the circle with equation $x^{2}+y^{2}=c$.

The graph of $f(x, y)=x^{2}+y^{2}$

Example The graph of $f(x, y)=y^{2}-x^{2}$ is an example of a graph with a saddle point. Note that above the line $x=0$ in the $x y$-plane the graph is the parabola $z=y^{2}$, which opens upward, while above the line $x=0$ in the $x y$-plane the graph is the parabola $z=-x^{2}$, which opens downward. The curve resulting from slicing the graph with the plane $z=c$ is the hyperbola $y^{2}-x^{2}=c$, which is why this graph is an example of a hyperbolic paraboloid.

The graph of $f(x, y)=y^{2}-x^{2}$

Example Suppose

$$
f(x, y)=\frac{\sin \left(\sqrt{x^{2}+y^{2}}\right)}{\sqrt{x^{2}+y^{2}}}
$$

Note that the value of f at a point (x, y) depends only on the distance $r=\sqrt{x^{2}+y^{2}}$ from (x, y) to the origin. It follows that the graph of f above any line in the $x y$-plane passing through the origin is the graph of

$$
z=\frac{\sin (r)}{r},
$$

which is a sine curve with decreasing amplitude.

The graph of $f(x, y)=\frac{\sin \left(\sqrt{x^{2}+y^{2}}\right)}{\sqrt{x^{2}+y^{2}}}$

10.2 Level sets

Definition If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and c is a real number, the set

$$
L=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c\right\}
$$

is called a level set for f.
Note that if $n=2$, then a level set L is a curve, called a level curve of f, and if $n=3$, then L is a surface, called a level surface of f. A plot showing numerous level curves is called a contour plot.

Example The level curves of $f(x, y)=x^{2}+y^{2}$ are concentric circles with centers at the origin.

Example The graph and a contour plot of

$$
f(x, y)=x y e^{-\left(x^{2}+y^{2}\right)}
$$

are shown below.
Example The level surfaces of the function $f(x, y, z)=x^{2}+2 y^{2}+4 z^{2}$ are ellipsoids. See the figure below for an example

Level curves of $f(x, y)=x^{2}+y^{2}$

The graph of $f(x, y)=x y e^{-\left(x^{2}+y^{2}\right)}$

Level curves of $f(x, y)=x y e^{-\left(x^{2}+y^{2}\right)}$

A level surface of $f(x, y, z)=x^{2}+2 y^{2}+4 z^{2}$

