Lecture 10: Functions from \mathbb{R}^n to \mathbb{R}

10.1 Graphs

Definition The graph of a function $f : \mathbb{R}^n \to \mathbb{R}$ is the set

$$\{(x_1, x_2, \dots, x_n, x_{n+1}) : x_{n+1} = f(x_1, x_2, \dots, x_n)\}.$$

Note that if $f : \mathbb{R}^n \to \mathbb{R}$, then the graph of f is in \mathbb{R}^{n+1} . Hence we may visualize the graph of f only when n = 1, in which case the graph is a curve in \mathbb{R}^2 , or n = 2, in which case the graph is a surface in \mathbb{R}^3 .

Example The graph of $f(x, y) = x^2 + y^2$ is an example of a *paraboloid*. Note that if we fix a value of x, say x = c, then the curve above the line x = c in the xy-plane is a parabola, namely, the graph of $z = y^2 + c^2$. Similarly, the curve above the line y = c is the parabola $z = x^2 + c^2$. Moreover, if we slice the graph of f with the plane z = c, where c > 0, the resulting curve is the circle with equation $x^2 + y^2 = c$.

The graph of $f(x, y) = x^2 + y^2$

Example The graph of $f(x, y) = y^2 - x^2$ is an example of a graph with a saddle point. Note that above the line x = 0 in the xy-plane the graph is the parabola $z = y^2$, which opens upward, while above the line x = 0 in the xy-plane the graph is the parabola $z = -x^2$, which opens downward. The curve resulting from slicing the graph with the plane z = c is the hyperbola $y^2 - x^2 = c$, which is why this graph is an example of a hyperbolic paraboloid.

The graph of $f(x,y) = y^2 - x^2$

Example Suppose

$$f(x,y) = \frac{\sin(\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}}$$

Note that the value of f at a point (x, y) depends only on the distance $r = \sqrt{x^2 + y^2}$ from (x, y) to the origin. It follows that the graph of f above any line in the xy-plane passing through the origin is the graph of

$$z = \frac{\sin(r)}{r},$$

which is a sine curve with decreasing amplitude.

10.2 Level sets

Definition If $f : \mathbb{R}^n \to \mathbb{R}$ and c is a real number, the set

$$L = \{(x_1, x_2, \dots, x_n) : f(x_1, x_2, \dots, x_n) = c\}$$

is called a *level set* for f.

Note that if n = 2, then a level set L is a curve, called a *level curve* of f, and if n = 3, then L is a surface, called a *level surface* of f. A plot showing numerous level curves is called a *contour plot*.

Example The level curves of $f(x, y) = x^2 + y^2$ are concentric circles with centers at the origin.

Example The graph and a contour plot of

$$f(x,y) = xye^{-(x^2+y^2)}$$

are shown below.

Example The level surfaces of the function $f(x, y, z) = x^2 + 2y^2 + 4z^2$ are *ellipsoids*. See the figure below for an example

The graph of $f(x, y) = xye^{-(x^2+y^2)}$

Level curves of $f(x,y) = xye^{-(x^2+y^2)}$

A level surface of $f(x,y,z)=x^2+2y^2+4z^2$