Lecture 1: Points in Space

1.1 Two and three dimensional Cartesian space

Fermat (1601-1665) and Descartes (1596-1650) had the idea of identifying points in the plane with a unique ordered pair of real numbers. That is, given a plane, we first identify two orthogonal lines, generically called the x-axis and the y-axis. If P is a point in this plane and a is the signed distance from P to the y-axis and b is the signed distance to the x-axis, then we may identify P with the ordered pair (a, b).

Similarly, for 3 -space, we add a third axis, the z-axis, orthogonal to both the x-axis and the y-axis and intersecting both. Then the ordered triple (a, b, c) identifies a point P in three space located a signed distance c above the point (a, b) in the $x y$-plane.

Notation: We denote the points in the Cartesian plane by \mathbb{R}^{2} and the points in Cartesian 3 -space by \mathbb{R}^{3}.

1.2 Distance

Recall that if $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ are points in \mathbb{R}^{2}, then the distance between P and Q is

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}},
$$

a consequence of the Pythagorean theorem. Now if $P=\left(x_{1}, y_{1}, z_{1}\right)$ and $Q=\left(x_{2}, y_{2}, z_{2}\right)$ are points in \mathbb{R}^{3}, then the distance between $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{1}\right)$ is

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

A point in Cartesian 3-space
and the distance from $\left(x_{2}, y_{2}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|z_{2}-z_{1}\right|
$$

Thus another application of the Pythagorean theorem gives us the distance from P to Q as

$$
\sqrt{\left(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Example The set of all points in \mathbb{R}^{3} satisfying the equation

$$
x^{2}+y^{2}+z^{2}=25
$$

is a sphere of radius 5 centered at the origin.
In general, given $r>0$, the set of all points in \mathbb{R}^{3} satisfying the equation

$$
(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}
$$

is a sphere of radius r centered at (a, b, c).

1.3 Higher dimensional spaces

Although spaces of dimensions greater than 3 are difficult to visualize, it is not hard to add coordinates to our algebraic representations. Hence we may define n-dimensional Cartesian space to be the set

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \text { is a real number, } i=1,2, \ldots, n\right\}
$$

Such spaces arise in many areas of study, including physics (for example, if considering both the positions and velocities of a system of particles, or the position and time of a single particle) and economics (for example, if considering the inputs to the gross national product of a country). If $P=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $Q=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ are two points in \mathbb{R}^{n}, then we define the distance between P and Q to be

$$
\sqrt{\left(y_{1}-x_{1}\right)^{2}+\left(y_{2}-x_{2}\right)^{2}+\cdots+\left(y_{n}-x_{n}\right)^{2}}
$$

and, given $r>0$, we call the set of all points $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ satisfying the equation

$$
\left(x_{1}-a_{1}\right)^{2}+\left(x_{2}-a_{2}\right)^{2}+\cdots+\left(x_{n}-a_{n}\right)^{2}=r^{2}
$$

the $(n-1)$-dimensional sphere of radius r centered at $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

