John von Neumann

▶ 1903 - 1957

Made fundamental contributions in, among other areas, quantum mechanics, game theory, and computing.

One of the six founding members of the Institute for Advanced Study at Princeton (Einstein was one of the others).

Dan Sloughter (Furman University)

The Mathematician

November 30, 2006
John von Neumann

- 1903 - 1957
- Made fundamental contributions in, among other areas, quantum mechanics, game theory, and computing
John von Neumann

- 1903 - 1957
- Made fundamental contributions in, among other areas, quantum mechanics, game theory, and computing
- One of the six founding members of the Institute for Advanced Study at Princeton (Einstein was one of the others)
Crisis in foundations

- Until the 19th century, geometry was the foundation of mathematics: everything was thought to be reducible to the axioms of Euclidean geometry.

Discovery of non-Euclidean geometry:

- Euclid's parallel postulate: given a line \(\ell \) and a point \(P \) not on \(\ell \), there exists a unique line through \(P \) which is parallel to \(\ell \).

- The parallel postulate was not as empirically grounded as the other axioms.

- From Euclid on, mathematicians tried to derive the parallel postulate from the other axioms.

- In the 19th century it was realized that this was not possible: in fact, there exist geometries in which there are an infinite number of lines through \(P \) parallel to \(\ell \), and others for which there are no lines through \(P \) parallel to \(\ell \).

- The discovery of non-Euclidean geometries, along with developments in the understanding of infinities, highlighted the need for a reexamination of the foundations.
Crisis in foundations

- Until the 19th century, geometry was the foundation of mathematics: everything was thought to be reducible to the axioms of Euclidean geometry.
- Discovery of non-Euclidean geometry:
Crisis in foundations

- Until the 19th century, geometry was the foundation of mathematics: everything was thought to be reducible to the axioms of Euclidean geometry.

- Discovery of non-Euclidean geometry:
 - Euclid’s parallel postulate: given a line ℓ and a point P not on ℓ, there exists a unique line through P which is parallel to ℓ.
Crisis in foundations

- Until the 19th century, geometry was the foundation of mathematics: everything was thought to be reducible to the axioms of Euclidean geometry.

- Discovery of non-Euclidean geometry:
 - Euclid’s parallel postulate: given a line ℓ and a point P not on ℓ, there exists a unique line through P which is parallel to ℓ.
 - The parallel postulate was not as empirically grounded as the other axioms.
Crisis in foundations

- Until the 19th century, geometry was the foundation of mathematics: everything was thought to be reducible to the axioms of Euclidean geometry.
- Discovery of non-Euclidean geometry:
 - Euclid’s parallel postulate: given a line ℓ and a point P not on ℓ, there exists a unique line through P which is parallel to ℓ.
 - The parallel postulate was not as empirically grounded as the other axioms.
 - From Euclid on, mathematicians tried to derive the parallel postulate from the other axioms.
Crisis in foundations

▶ Until the 19th century, geometry was the foundation of mathematics: everything was thought to be reducible to the axioms of Euclidean geometry.

▶ Discovery of non-Euclidean geometry:
 ▶ Euclid’s parallel postulate: given a line ℓ and a point P not on ℓ, there exists a unique line through P which is parallel to ℓ.
 ▶ The parallel postulate was not as empirically grounded as the other axioms.
 ▶ From Euclid on, mathematicians tried to derive the parallel postulate from the other axioms.
 ▶ In the 19th century it was realized that this was not possible: in fact, there exist geometries in which there are an infinite number of lines through P parallel to ℓ, and others for which there are no lines through P parallel to ℓ.
Crisis in foundations

- Until the 19th century, geometry was the foundation of mathematics: everything was thought to be reducible to the axioms of Euclidean geometry.

- Discovery of non-Euclidean geometry:
 - Euclid’s parallel postulate: given a line \(\ell \) and a point \(P \) not on \(\ell \), there exists a unique line through \(P \) which is parallel to \(\ell \).
 - The parallel postulate was not as empirically grounded as the other axioms.
 - From Euclid on, mathematicians tried to derive the parallel postulate from the other axioms.
 - In the 19th century it was realized that this was not possible: in fact, there exist geometries in which there are an infinite number of lines through \(P \) parallel to \(\ell \), and others for which there are no lines through \(P \) parallel to \(\ell \).

- The discovery of non-Euclidean geometries, along with developments in the understanding of infinities, highlighted the need for a reexamination of the foundations.
Mathematicians needed to find a set of axioms for set theory which would be consistent, that is, contain no contradictions, and complete, that is, strong enough to prove any mathematical statement or its negation. David Hilbert (1862 - 1943) laid out a plan of attack: Specify a finite set of axioms. Specify a finite set of reasoning procedures, rules for manipulating the axioms. Demonstrate consistency and completeness using the most elementary of reasoning procedures (acceptable to all mathematicians). Hilbert's program is the beginning of the study of the procedures of mathematics, that is, meta-mathematics.
Hilbert’s program

- Mathematicians needed to find a set of axioms for set theory which would be
 - consistent, that is, contain no contradictions, and
Hilbert’s program

- Mathematicians needed to find a set of axioms for set theory which would be
 - *consistent*, that is, contain no contradictions, and
 - *complete*, that is, strong enough to prove any mathematical statement or its negation.
Hilbert’s program

Mathematicians needed to find a set of axioms for set theory which would be

- consistent, that is, contain no contradictions, and
- complete, that is, strong enough to prove any mathematical statement or its negation.

David Hilbert (1862 - 1943) laid out a plan of attack:
Hilbert’s program

- Mathematicians needed to find a set of axioms for set theory which would be
 - *consistent*, that is, contain no contradictions, and
 - *complete*, that is, strong enough to prove any mathematical statement or its negation.

- David Hilbert (1862 - 1943) laid out a plan of attack:
 - Specify a finite set of axioms.
Hilbert’s program

- Mathematicians needed to find a set of axioms for set theory which would be
 - consistent, that is, contain no contradictions, and
 - complete, that is, strong enough to prove any mathematical statement or its negation.

- David Hilbert (1862 - 1943) laid out a plan of attack:
 - Specify a finite set of axioms.
 - Specify a finite set of reasoning procedures, rules for manipulating the axioms.
Hilbert’s program

Mathematicians needed to find a set of axioms for set theory which would be:

- *consistent*, that is, contain no contradictions, and
- *complete*, that is, strong enough to prove any mathematical statement or its negation.

David Hilbert (1862 - 1943) laid out a plan of attack:

- Specify a finite set of axioms.
- Specify a finite set of reasoning procedures, rules for manipulating the axioms.
- Demonstrate consistency and completeness using the most elementary of reasoning procedures (acceptable to all mathematicians).
Hilbert’s program

- Mathematicians needed to find a set of axioms for set theory which would be
 - *consistent*, that is, contain no contradictions, and
 - *complete*, that is, strong enough to prove any mathematical statement or its negation.

- David Hilbert (1862 - 1943) laid out a plan of attack:
 - Specify a finite set of axioms.
 - Specify a finite set of reasoning procedures, rules for manipulating the axioms.
 - Demonstrate consistency and completeness using the most elementary of reasoning procedures (acceptable to all mathematicians).

- Hilbert’s program is the beginning of the study of the procedures of mathematics, that is, *meta-mathematics.*
Hilbert’s program reduces mathematics to the formal manipulation of symbols using a prescribed list of rules.
Hilbert’s program reduces mathematics to the formal manipulation of symbols using a prescribed list of rules.

This approach appears to rob mathematics of any meaning beyond the symbols.
Hilbert’s program reduces mathematics to the formal manipulation of symbols using a prescribed list of rules.

This approach appears to rob mathematics of any meaning beyond the symbols.

Hilbert was willing to sacrifice meaning for consistency and completeness.
In 1931, Kurt Gödel (1906 - 1978) publishes *On Formally Undecidable Propositions of Principia Mathematica and Related Systems*. Gödel shows that not only does Russell’s program fail, but any attempt must of necessity fail.
In 1931, Kurt Gödel (1906 - 1978) publishes *On Formally Undecidable Propositions of Principia Mathematica and Related Systems*. In this paper, he proves that

- Any formal system which includes elementary arithmetic cannot prove its own consistency, and
- Any consistent formal system which includes elementary arithmetic is incomplete.

The *Principia Mathematica* in Gödel's title is a reference to the attempt of Russell to use logic to provide foundations for mathematics. Gödel shows that not only does Russell's program fail, but any attempt must of necessity fail.
In 1931, Kurt Gödel (1906 - 1978) publishes *On Formally Undecidable Propositions of Principia Mathematica and Related Systems*. In this paper, he proves that any formal system which includes elementary arithmetic cannot prove its own consistency, and any consistent formal system which includes elementary arithmetic is incomplete.
In 1931, Kurt Gödel (1906 - 1978) publishes *On Formally Undecidable Propositions of Principia Mathematica and Related Systems*. In this paper, he proves that

- any formal system which includes elementary arithmetic cannot prove its own consistency, and
- any consistent formal system which includes elementary arithmetic is incomplete.
In 1931, Kurt Gödel (1906 - 1978) publishes *On Formally Undecidable Propositions of Principia Mathematica and Related Systems*. In this paper, he proves that:

- any formal system which includes elementary arithmetic cannot prove its own consistency, and
- any consistent formal system which includes elementary arithmetic is incomplete.

The *Principia Mathematica* in Gödel’s title is a reference to the attempt of Russell to use logic to provide foundations for mathematics. Gödel shows that not only does Russell’s program fail, but any attempt must of necessity fail.
The method

Gödel begins by assigning a unique number to every symbol, statement, and proof of a given symbolic language for mathematics (using the unique factorization of integers into primes), now called Gödel numbers.
The method

- Gödel begins by assigning a unique number to every symbol, statement, and proof of a given symbolic language for mathematics (using the unique factorization of integers into primes), now called Gödel numbers.

- Meta-mathematical statements, such as, “the sequence of formulas with Gödel number x is a proof for the formula with Gödel number z,” becomes a statement concerning properties of positive integers.
The method

- Gödel begins by assigning a unique number to every symbol, statement, and proof of a given symbolic language for mathematics (using the unique factorization of integers into primes), now called Gödel numbers.
- Meta-mathematical statements, such as, “the sequence of formulas with Gödel number x is a proof for the formula with Gödel number z,” becomes a statement concerning properties of positive integers.
- I.e., questions about mathematics become questions within mathematics.
The Gödel statement

- Gödel then constructs a statement which asserts that it itself does not have a proof.
The Gödel statement

- Gödel then constructs a statement which asserts that it itself does not have a proof.
- We are now in the position of the liar’s paradox: if the statement is provable, then its negation is provable; if the negation of the statement is provable, then the statement is provable.

Hence, if the axioms are consistent, neither the statement nor its negation is provable.

It follows that if the axioms of mathematics are consistent, then they are incomplete.

From this basis, Gödel shows that a statement asserting consistency is one of those statements for which neither it nor its negation has a proof.
The Gödel statement

- Gödel then constructs a statement which asserts that it itself does not have a proof.

- We are now in the position of the liar’s paradox: if the statement is provable, then its negation is provable; if the negation of the statement is provable, then the statement is provable.

- Hence, if the axioms are consistent, neither the statement nor its negation is provable.
The Gödel statement

- Gödel then constructs a statement which asserts that it itself does not have a proof.
- We are now in the position of the liar’s paradox: if the statement is provable, then its negation is provable; if the negation of the statement is provable, then the statement is provable.
- Hence, if the axioms are consistent, neither the statement nor its negation is provable.
- It follows that if the axioms of mathematics are consistent, then they are incomplete.
The Gödel statement

Gödel then constructs a statement which asserts that it itself does not have a proof.

We are now in the position of the liar’s paradox: if the statement is provable, then its negation is provable; if the negation of the statement is provable, then the statement is provable.

Hence, if the axioms are consistent, neither the statement nor its negation is provable.

It follows that if the axioms of mathematics are consistent, then they are incomplete.

From this basis, Gödel shows that a statement asserting consistency is one of those statements for which neither it nor its negation has a proof.
Can machines think?

- We know the Gödel statement is true, but the formal system itself cannot prove it.
Can machines think?

- We know the Gödel statement is true, but the formal system itself cannot prove it.
- Hence given any formal system, there are statements which we can know to be true, even though the system cannot prove it.
Can machines think?

▶ We know the Gödel statement is true, but the formal system itself cannot prove it.
▶ Hence given any formal system, there are statements which we can know to be true, even though the system cannot prove it.
▶ Roger Penrose (1931 -), and others, have argued that this shows that there are statements which humans can know to be true that a machine can never prove (thus putting into question the possibility of artificial intelligence).
What is the connection between mathematics and the empirical world?
What is the connection between mathematics and the empirical world?

Von Neumann argues that there is a connection, but, for any given area of mathematics, the connection may be deep in the past.
Empiricism

What is the connection between mathematics and the empirical world?

Von Neumann argues that there is a connection, but, for any given area of mathematics, the connection may be deep in the past.

Moreover, the connection is not decisive: empirical problems do not dictate the direction of mathematical research as they do in the other sciences.
Von Neumann also contends that standards of mathematical rigor change with time.
Von Neumann also contends that standards of mathematical rigor change with time.

Example: Euclid’s standard of proof, although high, does not hold up today.
Von Neumann also contends that standards of mathematical rigor change with time.

Example: Euclid’s standard of proof, although high, does not hold up today.

Example: Much of the work of 18th century mathematicians is not at the standard of rigor demanded today.
Von Neumann also contends that standards of mathematical rigor change with time.

Example: Euclid’s standard of proof, although high, does not hold up today.

Example: Much of the work of 18th century mathematicians is not at the standard of rigor demanded today.

Note: Some mathematicians of the time recognized this, but others seemed to hold that their work was logically sound.
Von Neumann also contends that standards of mathematical rigor change with time.

Example: Euclid’s standard of proof, although high, does not hold up today.

Example: Much of the work of 18th century mathematicians is not at the standard of rigor demanded today.

Note: Some mathematicians of the time recognized this, but others seemed to hold that their work was logically sound.

Conclusion: There is not a priori standard of mathematical proof.
Rigor

▶ Von Neumann also contends that standards of mathematical rigor change with time.
▶ Example: Euclid’s standard of proof, although high, does not hold up today.
▶ Example: Much of the work of 18th century mathematicians is not at the standard of rigor demanded today.
 ▶ Note: Some mathematicians of the time recognized this, but others seemed to hold that their work was logically sound.
▶ Conclusion: There is not a priori standard of mathematical proof.
▶ So what makes a mathematical proof acceptable?
With empirical considerations in the distant past, and no *a priori* standards, can mathematics justify itself aesthetically?
With empirical considerations in the distant past, and no a priori standards, can mathematics justify itself aesthetically?

Von Neumann gives a conditional “yes”:
With empirical considerations in the distant past, and no *a priori* standards, can mathematics justify itself aesthetically?

Von Neumann gives a conditional “yes”:
- if there are correlated subjects which have closer empirical ties, and
With empirical considerations in the distant past, and no *a priori* standards, can mathematics justify itself aesthetically?

Von Neumann gives a conditional “yes”:
 - if there are correlated subjects which have closer empirical ties, and
 - “if the discipline is under the influence of men with an exceptionally well-developed taste.”
With empirical considerations in the distant past, and no *a priori* standards, can mathematics justify itself aesthetically?

Von Neumann gives a conditional “yes”:
- if there are correlated subjects which have closer empirical ties, and
- “if the discipline is under the influence of men with an exceptionally well-developed taste.”

Are we back to Hardy’s mathematics as art?