Lecture 1: Inverse Functions

1.1 Inverse Functions

Definition Suppose f is a function with domain S and range T. If g is a function with domain T and range S with the property that $f(g(x))=x$ for every x in S and $g(f(x))=x$ for every x in T, then we call g the inverse of f.

Example Let $f(x)=3 x+2$ and $g(x)=\frac{1}{3}(x-2)$. Then for any real number x we have

$$
f(g(x))=f\left(\frac{1}{3}(x-2)\right)=3\left(\frac{1}{3}(x-2)\right)+2=x
$$

and

$$
g(f(x))=g(3 x+2)=\frac{1}{3}((3 x+2)-2)=x
$$

Hence g is the inverse of f.
Note that if g is the inverse of f, then f is also the inverse of g.
Notation: We often denote the inverse of f by f^{-1}. For example, for the previous example we could write

$$
f^{-1}(x)=\frac{1}{3}(x-2) .
$$

Example Let $f(x)=\sqrt{x-3}$. Note that f has domain $[3, \infty)$ and range $[0, \infty)$. To find an inverse g for f, we set $x=f(y)$ and solve for y. That is, we let

$$
x=\sqrt{y-3}
$$

and solve for y to find

$$
y=x^{2}+3
$$

Hence the function $g(x)=x^{2}+3$, with domain $[0, \infty)$, is the inverse of f. The graphs of f and g are shown below.

Note that in the previous example the graph of g is the graph of f reflected about the line $y=x$. This relationship always holds between the graph of f and its inverse (since if (x, y) is a point on the graph of f, then (y, x) is a point on the graph of $\left.f^{-1}\right)$.

1.2 One-to-one functions

The function $f(x)=x^{2}$ does not have an inverse because both $f(2)=4$ and $f(-2)=4$. That is, an inverse function would need to send 4 to both 2 and -2 , which behavior is not

Graphs of $f(x)=\sqrt{x-3}$ and $g(x)-x^{2}+3$
allowed for a function. Hence a function f has an inverse if and only if for every value y in the range of f there is a unique value x in the range of f for which $f(x)=y$.

Definition Suppose f is a function with the property that for every u and v in the domain of f we have $f(u)=f(v)$ implies that $u=v$. Then we say f is one-to-one.

Note that if f is increasing on an interval (a, b), then f is one-to-one and so has an inverse on (a, b). Similarly, if f is decreasing on (a, b), then f has in inverse on (a, b).

Example Although $f(x)=x^{2}$ does not have in inverse on all of $(-\infty, \infty)$, it is increasing on $[0, \infty)$ and so has an inverse if restricted to this interval (namely, $f^{-1}(x)=\sqrt{x}$). Similarly, if we restrict f to the interval $(-\infty, 0]$, then f is decreasing and so has an inverse (namely, $f^{-1}(x)=-\sqrt{x}$).

Proposition If f is differentiable on (a, b) with either $f^{\prime}(x)>0$ or $f^{\prime}(x)<0$ for all x in (a, b), then f has an inverse on (a, b).

Example Let $f(x)=3 x-2 \cos (x)$. Then $f^{\prime}(x)=3+2 \sin (x)$, and so $f^{\prime}(x)>0$ for all x in $(-\infty, \infty)$. Hence f has an inverse on $(-\infty, \infty)$. The graphs of f and its inverse are shown below.

1.3 Derivatives of inverse functions

Suppose f is differentiable with inverse g and $f(s)=t$. Moreover, suppose g is differentiable at t and $f^{\prime}(s) \neq 0$. Then $f(g(x))=x$ for all x, so

Graph of $f(x)=3 x-2 \cos (x)$ and its inverse

$$
\frac{d}{d x} f(g(x))=\frac{d}{d x} x .
$$

Hence

$$
f^{\prime}(g(x)) g^{\prime}(x)=1
$$

In particular,

$$
g^{\prime}(t)=\frac{1}{f^{\prime}(g(t))}=\frac{1}{f^{\prime}(s)}
$$

Of course, this is exactly what we should expect given the relationship between the graphs of f and g.

More generally, it is possible to prove the following theorem.
Proposition Suppose f is differentiable and one-to-one on the interval (a, b) with range (c, d). If $f^{\prime}(x) \neq 0$ for all x in (a, b), then the inverse g of f is differentiable on (c, d). Moreover, if $t=f(s)$, then

$$
g^{\prime}(t)=\frac{1}{f^{\prime}(s)}
$$

Example If $f(x)=3 x-2 \cos (x)$, then $f(0)=-2$. Hence, if $g=f^{-1}$,

$$
g^{\prime}(-2)=\frac{1}{f^{\prime}(0)}=\frac{1}{3+2 \sin (0)}=\frac{1}{3} .
$$

