Lecture 10: Concavity

10.1 Concave upward and concave downward

Example Note that both $f(x) = x^2$ and $g(x) = \sqrt{x}$ are increasing on the interval $[0, \infty)$, but their graphs look significantly different. This is explained by the fact that f'(x) = 2x, and so is an increasing function on $[0, \infty)$, whereas $g'(x) = \frac{1}{2\sqrt{x}}$, and so is a decreasing function on $(0, \infty)$.

Definition We say the graph of a function f is *concave upward* on an interval (a, b) if f' is increasing on (a, b). We say the graph of f is *concave downward* on (a, b) if f' is decreasing on (a, b).

Theorem If f is twice differentiable on an interval (a, b), then

1. f''(x) > 0 for all x in (a, b) implies the graph of f is concave upward on (a, b),

2. f''(x) < 0 for all x in (a, b) implies the graph of f is concave downward on (a, b).

10.2 Examples

Example Let $f(x) = x^2$. Then f''(x) = 2, so f''(x) > 0 for all x in $(-\infty, \infty)$. Thus the graph of f is concave upward on $(-\infty, \infty)$.

Example Let $f(x) = \sqrt{x}$. Then $f''(x) = -\frac{1}{4}x^{-\frac{3}{2}}$, so f''(x) < 0 for all x in $(0, \infty)$. Thus the graph of f is concave downward on $(0, \infty)$.

Example Let $f(x) = -x^2$. Then f''(x) = -2, so f''(x) < 0 for all x in $(-\infty, \infty)$. Thus the graph of f is concave downward on $(-\infty, \infty)$.

Example Let $f(x) = x^{\frac{2}{3}}$. Then $f''(x) = -\frac{2}{9}x^{-\frac{4}{3}}$, so f''(x) < 0 for all x in $(-\infty, 0)$ and in $(0, \infty)$. Thus the graph of f is concave downward on $(-\infty, 0)$ and on $(0, \infty)$.

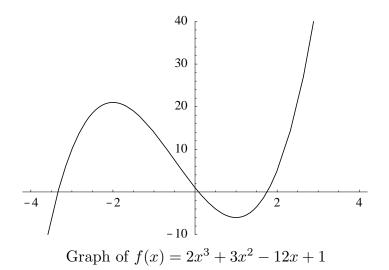
Example Let $f(x) = x^3$. Then f''(x) = 6x, so f''(x) < 0 for all x in $(-\infty, 0)$ and f''(x) > 0 for all x in $(0, \infty)$. Thus the graph of f is concave downward on $(-\infty, 0)$ and concave upward on $(0, \infty)$. We call the point (0, 0) where the concavity of the graph changes a *point of inflection*.

Definition A point on the graph of a function at which the concavity changes is called a *point of inflection*.

Example Let $f(x) = 2x^3 + 3x^2 - 12x + 1$. Then f''(x) = 12x + 6, so f''(x) = 0 when $x = -\frac{1}{2}$. Moreover, f''(x) < 0 when x is in $(-\infty, -\frac{1}{2})$ and f''(x) > 0 when x is in $(-\frac{1}{2}, \infty)$.

Hence the graph of f is concave upward on $(-\frac{1}{2}, \infty)$ and concave downward on $(-\infty, -\frac{1}{2})$. Moreover, $(-\frac{1}{2}, \frac{15}{2})$ is a point of inflection.

Combining this new information with our previous information on this function (namely, f(-3) = 10, f(-2) = 21, f(1) = -6, f(2) = 5, f is increasing on $(-\infty, -2)$ and on $(1, \infty)$, and f is decreasing on (-2, 1)), we can sketch the graph of f.



10.3 The second derivative test

Note that if f'(c) = 0 and f''(x) < 0 on an open interval (a, b) containing c, then f' is decreasing on (a, b), and hence f'(x) > 0 for x in (a, c) and f'(x) < 0 for x in (c, b). Thus f is increasing on (a, c) and decreasing on (c, b), and so f has a local maximum at c.

Second Derivative Test Suppose f'' is continuous on an open interval that contains the point c and f'(c) = 0. Then

1. f''(c) < 0 implies f has a local maximum at c,

2. f''(c) > 0 implies f has a local minimum at c.

10.4 More examples

Example Let $f(x) = 3x^5 - 5x^3 + 1$. Then

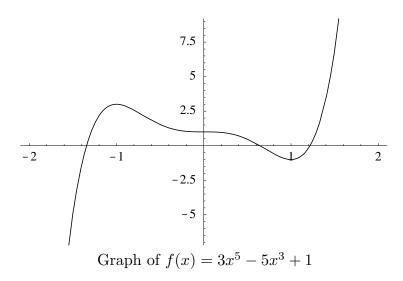
$$f'(x) = 15x^4 - 15x^2 = 15x^2(x^2 - 1).$$

Hence f'(x) = 0 when x = -1, x = 0, or x = 1. Now $f''(x) = 60x^3 - 30x$, so f''(-1) = -30 < 0, f''(0) = 0, and f''(1) = 30 > 0. Hence f has a local maximum of 3 at x = -1 and a local minimum of -1 at x = 1.

Moreover, we may conclude that f is increasing on $(-\infty, -1)$ and on $(1, \infty)$, and f is decreasing on (-1, 0) and on (0, 1). It follows that f has neither a local maximum nor a local minimum at x = 0.

Since $f''(x) = 60x^3 - 30x = 60x(x^2 - \frac{1}{2})$, we see that f''(x) = 0 when $x = -\frac{1}{\sqrt{2}}$, x = 0, or $x = \frac{1}{\sqrt{2}}$. Moreover, we see that f''(x) < 0 when x is in $(-\infty, -\frac{1}{\sqrt{2}})$ or $(0, \frac{1}{\sqrt{2}})$, and f''(x) > 0 when x is in $(-\frac{1}{\sqrt{2}}, 0)$ or $(\frac{1}{\sqrt{2}}, \infty)$. Hence, the graph of f is concave upward on $(-\frac{1}{\sqrt{2}}, 0)$ and $(\frac{1}{\sqrt{2}}, \infty)$, and concave downward on $(-\infty, -\frac{1}{\sqrt{2}})$ and $(0, \frac{1}{\sqrt{2}})$. Thus $(-\frac{1}{\sqrt{2}}, \frac{7}{4\sqrt{2}} + 1)$, (0, 1), and $(\frac{1}{\sqrt{2}}, -\frac{7}{4\sqrt{2}} + 1)$ are all points of inflection.

Combining this information with the values f(-2) = -55, f(-1) = 3, $f(-\frac{1}{\sqrt{2}}) = \frac{7}{4\sqrt{2}} + 1 \approx 2.2374$, f(0) = 1, $f(\frac{1}{\sqrt{2}}) = -\frac{7}{4\sqrt{2}} + 1 \approx -0.2374$, f(1) = -1, and f(2) = 57, we may sketch the graph of f.



Example Let $g(x) = \frac{x}{x^2 + 1}$. Then

$$g'(x) = \frac{1 - x^2}{(x^2 + 1)^2}$$

and

$$g''(x) = \frac{2x^3 - 6x}{(x^2 + 1)^3}$$

Then g'(x) = 0 when x = -1 or x = 1, and $g''(-1) = \frac{1}{2}$ and $g''(1) = -\frac{1}{2}$. Hence g has a local maximum of $\frac{1}{2}$ at x = 1 and a local minimum of $-\frac{1}{2}$ at x = -1. Moreover, g is increasing on (-1, 1) and decreasing on $(-\infty, -1)$ and $(1, \infty)$.

Now g''(x) = 0 when $2x^3 - 6x = 2x(x^2 - 3) = 0$, that is, when $x = -\sqrt{3}$, x = 0, or $x = \sqrt{3}$. Also, g''(x) < 0 when x is in $(-\infty, -\sqrt{3})$ or $(0, \sqrt{3})$, and g''(x) > 0 when x is in $(-\sqrt{3}, 0)$ or $(\sqrt{3}, \infty)$. Hence the graph of g is concave downward on $(-\infty, -\sqrt{3})$ and $(0, \sqrt{3})$, and the graph of g is concave upward on $(-\sqrt{3}, 0)$ and $(\sqrt{3}, \infty)$. Thus there are three points of inflection: $(-\sqrt{3}, -\frac{\sqrt{3}}{4})$, (0, 0), and $(\sqrt{3}, \frac{\sqrt{3}}{4})$

Adding to the above information the values $g(-2) = -\frac{2}{5}$ and $g(2) = \frac{2}{5}$ helps us sketch the graph of g, but we really need more information about the behavior of the function for values of x approaching $-\infty$ and ∞ before we can fully understand the shape of the graph of g.

