Lecture 10: Concavity

10.1 Concave upward and concave downward

Example Note that both $f(x)=x^{2}$ and $g(x)=\sqrt{x}$ are increasing on the interval $[0, \infty)$, but their graphs look significantly different. This is explained by the fact that $f^{\prime}(x)=2 x$, and so is an increasing function on $[0, \infty)$, whereas $g^{\prime}(x)=\frac{1}{2 \sqrt{x}}$, and so is a decreasing function on $(0, \infty)$.

Definition We say the graph of a function f is concave upward on an interval (a, b) if f^{\prime} is increasing on (a, b). We say the graph of f is concave downward on (a, b) if f^{\prime} is decreasing on (a, b).

Theorem If f is twice differentiable on an interval (a, b), then

1. $f^{\prime \prime}(x)>0$ for all x in (a, b) implies the graph of f is concave upward on (a, b),
2. $f^{\prime \prime}(x)<0$ for all x in (a, b) implies the graph of f is concave downward on (a, b).

10.2 Examples

Example Let $f(x)=x^{2}$. Then $f^{\prime \prime}(x)=2$, so $f^{\prime \prime}(x)>0$ for all x in $(-\infty, \infty)$. Thus the graph of f is concave upward on $(-\infty, \infty)$.

Example Let $f(x)=\sqrt{x}$. Then $f^{\prime \prime}(x)=-\frac{1}{4} x^{-\frac{3}{2}}$, so $f^{\prime \prime}(x)<0$ for all x in $(0, \infty)$. Thus the graph of f is concave downward on $(0, \infty)$.

Example Let $f(x)=-x^{2}$. Then $f^{\prime \prime}(x)=-2$, so $f^{\prime \prime}(x)<0$ for all x in $(-\infty, \infty)$. Thus the graph of f is concave downward on $(-\infty, \infty)$.

Example Let $f(x)=x^{\frac{2}{3}}$. Then $f^{\prime \prime}(x)=-\frac{2}{9} x^{-\frac{4}{3}}$, so $f^{\prime \prime}(x)<0$ for all x in $(-\infty, 0)$ and in $(0, \infty)$. Thus the graph of f is concave downward on $(-\infty, 0)$ and on $(0, \infty)$.

Example Let $f(x)=x^{3}$. Then $f^{\prime \prime}(x)=6 x$, so $f^{\prime \prime}(x)<0$ for all x in $(-\infty, 0)$ and $f^{\prime \prime}(x)>0$ for all x in $(0, \infty)$. Thus the graph of f is concave downward on $(-\infty, 0)$ and concave upward on $(0, \infty)$. We call the point $(0,0)$ where the concavity of the graph changes a point of inflection.

Definition A point on the graph of a function at which the concavity changes is called a point of inflection.

Example Let $f(x)=2 x^{3}+3 x^{2}-12 x+1$. Then $f^{\prime \prime}(x)=12 x+6$, so $f^{\prime \prime}(x)=0$ when $x=-\frac{1}{2}$. Moreover, $f^{\prime \prime}(x)<0$ when x is in $\left(-\infty,-\frac{1}{2}\right)$ and $f^{\prime \prime}(x)>0$ when x is in $\left(-\frac{1}{2}, \infty\right)$.

Hence the graph of f is concave upward on $\left(-\frac{1}{2}, \infty\right)$ and concave downward on $\left(-\infty,-\frac{1}{2}\right)$. Moreover, $\left(-\frac{1}{2}, \frac{15}{2}\right)$ is a point of inflection.

Combining this new information with our previous information on this function (namely, $f(-3)=10, f(-2)=21, f(1)=-6, f(2)=5, f$ is increasing on $(-\infty,-2)$ and on $(1, \infty)$, and f is decreasing on $(-2,1)$), we can sketch the graph of f.

Graph of $f(x)=2 x^{3}+3 x^{2}-12 x+1$

10.3 The second derivative test

Note that if $f^{\prime}(c)=0$ and $f^{\prime \prime}(x)<0$ on an open interval (a, b) containing c, then f^{\prime} is decreasing on (a, b), and hence $f^{\prime}(x)>0$ for x in (a, c) and $f^{\prime}(x)<0$ for x in (c, b). Thus f is increasing on (a, c) and decreasing on (c, b), and so f has a local maximum at c.

Second Derivative Test Suppose $f^{\prime \prime}$ is continuous on an open interval that contains the point c and $f^{\prime}(c)=0$. Then

1. $f^{\prime \prime}(c)<0$ implies f has a local maximum at c,
2. $f^{\prime \prime}(c)>0$ implies f has a local minimum at c.

10.4 More examples

Example Let $f(x)=3 x^{5}-5 x^{3}+1$. Then

$$
f^{\prime}(x)=15 x^{4}-15 x^{2}=15 x^{2}\left(x^{2}-1\right) .
$$

Hence $f^{\prime}(x)=0$ when $x=-1, x=0$, or $x=1$. Now $f^{\prime \prime}(x)=60 x^{3}-30 x$, so $f^{\prime \prime}(-1)=$ $-30<0, f^{\prime \prime}(0)=0$, and $f^{\prime \prime}(1)=30>0$. Hence f has a local maximum of 3 at $x=-1$ and a local minimum of -1 at $x=1$.

Moreover, we may conclude that f is increasing on $(-\infty,-1)$ and on $(1, \infty)$, and f is decreasing on $(-1,0)$ and on $(0,1)$. It follows that f has neither a local maximum nor a local minimum at $x=0$.

Since $f^{\prime \prime}(x)=60 x^{3}-30 x=60 x\left(x^{2}-\frac{1}{2}\right)$, we see that $f^{\prime \prime}(x)=0$ when $x=-\frac{1}{\sqrt{2}}, x=0$, or $x=\frac{1}{\sqrt{2}}$. Moreover, we see that $f^{\prime \prime}(x)<0$ when x is in $\left(-\infty,-\frac{1}{\sqrt{2}}\right)$ or $\left(0, \frac{1}{\sqrt{2}}\right)$, and $f^{\prime \prime}(x)>$ 0 when x is in $\left(-\frac{1}{\sqrt{2}}, 0\right)$ or $\left(\frac{1}{\sqrt{2}}, \infty\right)$. Hence, the graph of f is concave upward on $\left(-\frac{1}{\sqrt{2}}, 0\right)$ and $\left(\frac{1}{\sqrt{2}}, \infty\right)$, and concave downward on $\left(-\infty,-\frac{1}{\sqrt{2}}\right)$ and $\left(0, \frac{1}{\sqrt{2}}\right)$. Thus $\left(-\frac{1}{\sqrt{2}}, \frac{7}{4 \sqrt{2}}+1\right)$, $(0,1)$, and $\left(\frac{1}{\sqrt{2}},-\frac{7}{4 \sqrt{2}}+1\right)$ are all points of inflection.

Combining this information with the values $f(-2)=-55, f(-1)=3, f\left(-\frac{1}{\sqrt{2}}\right)=\frac{7}{4 \sqrt{2}}+1 \approx$ $2.2374, f(0)=1, f\left(\frac{1}{\sqrt{2}}\right)=-\frac{7}{4 \sqrt{2}}+1 \approx-0.2374, f(1)=-1$, and $f(2)=57$, we may sketch the graph of f.

Graph of $f(x)=3 x^{5}-5 x^{3}+1$

Example Let $g(x)=\frac{x}{x^{2}+1}$. Then

$$
g^{\prime}(x)=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}
$$

and

$$
g^{\prime \prime}(x)=\frac{2 x^{3}-6 x}{\left(x^{2}+1\right)^{3}} .
$$

Then $g^{\prime}(x)=0$ when $x=-1$ or $x=1$, and $g^{\prime \prime}(-1)=\frac{1}{2}$ and $g^{\prime \prime}(1)=-\frac{1}{2}$. Hence g has a local maximum of $\frac{1}{2}$ at $x=1$ and a local minimum of $-\frac{1}{2}$ at $x=-1$. Moreover, g is increasing on $(-1,1)$ and decreasing on $(-\infty,-1)$ and $(1, \infty)$.

Now $g^{\prime \prime}(x)=0$ when $2 x^{3}-6 x=2 x\left(x^{2}-3\right)=0$, that is, when $x=-\sqrt{3}, x=0$, or $x=\sqrt{3}$. Also, $g^{\prime \prime}(x)<0$ when x is in $(-\infty,-\sqrt{3})$ or $(0, \sqrt{3})$, and $g^{\prime \prime}(x)>0$ when x is in $(-\sqrt{3}, 0)$
or $(\sqrt{3}, \infty)$. Hence the graph of g is concave downward on $(-\infty,-\sqrt{3})$ and $(0, \sqrt{3})$, and the graph of g is concave upward on $(-\sqrt{3}, 0)$ and $(\sqrt{3}, \infty)$. Thus there are three points of inflection: $\left(-\sqrt{3},-\frac{\sqrt{3}}{4}\right),(0,0)$, and $\left(\sqrt{3}, \frac{\sqrt{3}}{4}\right)$

Adding to the above information the values $g(-2)=-\frac{2}{5}$ and $g(2)=\frac{2}{5}$ helps us sketch the graph of g, but we really need more information about the behavior of the function for values of x approaching $-\infty$ and ∞ before we can fully understand the shape of the graph of g.

