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Definitions

» We say a function f is increasing on an interval [ if, for every x; and
xp in I, if x;1 < x», then f(Xl) < f(Xg).
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Definitions

» We say a function f is increasing on an interval | if, for every x; and
xp in I, if x;1 < xp, then f(Xl) < f(Xz).

» We say a function f is decreasing on an interval [ if, for every x; and
xp in 1, if x1 < xz, then f(x1) > f(x2).
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Definitions

» We say a function f is increasing on an interval | if, for every x; and
xp in I, if x;1 < xp, then f(Xl) < f(Xg).

» We say a function f is decreasing on an interval / if, for every x; and
xp in 1, if x1 < xp, then f(x1) > f(x2).

» Example: Let f(x) = x°.
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Definitions

» We say a function f is increasing on an interval | if, for every x; and
xp in I, if x;1 < xp, then f(Xl) < f(Xg).

» We say a function f is decreasing on an interval / if, for every x; and
xp in 1, if x1 < xp, then f(x1) > f(x2).

» Example: Let f(x) = x°.

» If 0 < x3 < xo, then X12 < X22, so f is increasing on (0, 00).
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Definitions

» We say a function f is increasing on an interval | if, for every x; and
xp in I, if x;1 < xp, then f(Xl) < f(Xg).

» We say a function f is decreasing on an interval / if, for every x; and
xp in 1, if x1 < xp, then f(x1) > f(x2).

» Example: Let f(x) = x°.

» If 0 < x1 < x9, then X12 < x22, so f is increasing on (0, 00).
» If x; < x2 <0, then x? > x2, so f is decreasing on (—o0,0).
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Connection with derivatives

» Suppose f is differentiable on (a, b) with f'(x) > 0 for all x in (a, b),
and let x; and xy be points in (a, b) with x; < xo.

Dan Sloughter (Furman University)

Increasing and Decreasing Functions



Connection with derivatives

» Suppose f is differentiable on (a, b) with f'(x) > 0 for all x in (a, b),
and let x; and xy be points in (a, b) with x; < xo.

» By the Mean Value Theorem, there exists a ¢ between x; and x; for

which
f’(C) _ f(X2) — f(Xl)‘

X2 — X1
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Connection with derivatives

» Suppose f is differentiable on (a, b) with f'(x) > 0 for all x in (a, b),
and let x; and xy be points in (a, b) with x; < xo.

» By the Mean Value Theorem, there exists a ¢ between x; and x; for

which
_ o)~ fla)

X2 — X1

f(c)

» Since f'(c) > 0 and x» — x; > 0, it follows that f(x1) < f(x2).
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» By the Mean Value Theorem, there exists a ¢ between x; and x; for

which
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» Since f'(c) > 0 and x» — x; > 0, it follows that f(x1) < f(x2).
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Connection with derivatives

» Suppose f is differentiable on (a, b) with f'(x) > 0 for all x in (a, b),
and let x; and xy be points in (a, b) with x; < xo.
» By the Mean Value Theorem, there exists a ¢ between x; and x; for
which . .
f-l(c) — (XZ) B (Xl)‘
Xo — X1
» Since f'(c) > 0 and x» — x; > 0, it follows that f(x1) < f(x2).
» Hence f is increasing on (a, b).

» Similarly, if f/(x) <0 for all x in (a, b), it follows that f is decreasing
on (a, b).
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Theorem

» Suppose f is differentiable on (a, b).
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Theorem

> Suppose f is differentiable on (a, b).
» Then
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Theorem

> Suppose f is differentiable on (a, b).
» Then

> if f/(x) > 0 for all x in (a, b), then f is increasing on (a, b);
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Theorem

> Suppose f is differentiable on (a, b).
» Then

> if f/(x) > 0 for all x in (a, b), then f is increasing on (a, b);
» if f/(x) <0 for all xin (a, b), then f is decreasing on (a, b);
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Theorem

> Suppose f is differentiable on (a, b).
» Then

> if f/(x) > 0 for all x in (a, b), then f is increasing on (a, b);
> if f/(x) < 0 for all x in (a, b), then f is decreasing on (a, b);
» if f/(x) =0 for all x in (a, b), then f is constant on (a, b).
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Example

> Let f(x) =2x3+3x% — 12x + 1.
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Example

> Let f(x) =2x3 +3x% — 12x + 1.
» Then

f'(x) = 6x% 4 6x — 12 = 6(x> + x — 2) = 6(x + 2)(x — 1).
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Example

> Let f(x) =2x3 +3x% — 12x + 1.
> Then

f/(x) = 6x% 4 6x — 12 = 6(x® + x — 2) = 6(x + 2)(x — 1).
» Then ’(x) =0 when x = =2 or x = 1.
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Example

> Let f(x) =2x3 +3x% — 12x + 1.
> Then

f/(x) = 6x% 4 6x — 12 = 6(x® + x — 2) = 6(x + 2)(x — 1).
» Then ’(x) =0 when x = =2 or x = 1.

» When x < —2, both x+2 <0and x—1 <0, so f/(x) > 0.
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Example

> Let f(x) =2x3 +3x% — 12x + 1.
> Then

f/(x) = 6x% 4 6x — 12 = 6(x® + x — 2) = 6(x + 2)(x — 1).
» Then ’(x) =0 when x = =2 or x = 1.

» When x < =2, both x4+ 2 <0 and x —1 <0, so f'(x) > 0.
» When —2 < x <1, x+2>0butx—1<0,so f(x) <0.
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Example

> Let f(x) =2x3 +3x% — 12x + 1.
> Then
f/(x) = 6x% 4 6x — 12 = 6(x® + x — 2) = 6(x + 2)(x — 1).
» Then ’(x) =0 when x = =2 or x = 1.
» When x < =2, both x4+ 2 <0 and x —1 <0, so f'(x) > 0.
» When —2 < x <1, x+2>0butx—1<0,so f(x) <0.
» When x > 1, both x+2>0and x—1> 0, so f'(x) > 0.

[m] = = =
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Example (cont'd)

» Note: we could also check the sign of f’ on these intervals by
evaluating f’ at selected points.
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Example (cont'd)

evaluating f’ at selected points.
» For example,

» Note: we could also check the sign of f’ on these intervals by
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Example (cont'd)

v

» Note: we could also check the sign of f’ on these intervals by
evaluating f’ at selected points.
For example,

» f'(—3) = 24 implies, by the Intermediate Value Theorem, that
f'(x) > 0 on (—o0, —2),
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Example (cont'd)

» Note: we could also check the sign of f’ on these intervals by
evaluating f’ at selected points.

» For example,

> f’(O) =

> f'(—3) = 24 implies, by the Intermediate Value Theorem, that
f'(x) > 0 on (—o0, —2),

12, so f'(x) < 0 on (—2,1),

o & E DA
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Example (cont'd)

» Note: we could also check the sign of f’ on these intervals by
evaluating f’ at selected points.
» For example,
> f’( 3) = 24 implies, by the Intermediate Value Theorem, that
f'(x) > 0 on (—o0, —2),
f'(0) = —12, so f'(x) < 0 on (—2,1),
> f’( ) =24, so f’(x) >0 on (1,00).

Dan Sloughter (Furman University) Increasing and Decreasing Functions October 24, 2007 6 /13



Example (cont'd)

» Note: we could also check the sign of f’ on these intervals by
evaluating f’ at selected points.
» For example,

> f'(—3) = 24 implies, by the Intermediate Value Theorem, that
f'(x) > 0 on (—o0, —2),

» f'(0) = —12, so f'(x) <0 on (—2,1),

» f'(2) =24, so f’(x) > 0on (1,00).

» Hence we conclude that
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Example (cont'd)

» Note: we could also check the sign of f’ on these intervals by
evaluating f’ at selected points.
» For example,
> f'(—3) = 24 implies, by the Intermediate Value Theorem, that
f'(x) > 0 on (—o0, —2),
» f'(0) = —12, so f'(x) <0 on (—2,1),
» f'(2) =24, so f'(x) > 0 on (1,00).
> Hence we conclude that
» f is increasing on (—oo, —2),
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Example (cont'd)

» Note: we could also check the sign of f’ on these intervals by
evaluating f’ at selected points.
» For example,
> f'(—3) = 24 implies, by the Intermediate Value Theorem, that
f'(x) > 0 on (—o0, —2),
» f'(0) = —12, so f'(x) <0 on (—2,1),
> f'(2) =24, so f'(x) > 0 on (1,00).
» Hence we conclude that
> f is increasing on (—oo, —2),
» f is decreasing on (—2,1),
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Example (cont'd)

» Note: we could also check the sign of f’ on these intervals by
evaluating f’ at selected points.
» For example,
> f'(—3) = 24 implies, by the Intermediate Value Theorem, that
f'(x) > 0 on (—o0, —2),
» f'(0) = —12, so f'(x) <0 on (—2,1),
> f'(2) =24, so f'(x) > 0 on (1,00).
» Hence we conclude that
> f is increasing on (—oo, —2),
> f is decreasing on (—2,1),
» and f is increasing on (1, 00).
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Example (cont'd)

» Graph of f(x) =2x3+3x% — 12x + 1:
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Example

> Let f(x) = x% — x3.
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Example

» Then
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> Let f(x) = x® — x3

f'(x) =

5x* — 3x% = x2(5x% — 3).
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Example

> Let f(x) = x% — x3
» Then

f'(x) =

5x* — 3x% = x?(5x*> — 3)
» Hence f'(x) =0 when x = —/¢, x =0, or x = \/j
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Example

> Let f(x) = x% — x3
» Then

f'(x) = 5x* — 3x% = x?(5x° —

» Hence f'(x) = 0 when x = —

§,x=0, or x =
» Note: x2>0forallx7é0, 5x2 — 3 < 0 for

_f<x<\ﬁ
5 5’

and 5x2 — 3 > 0 for all other x.
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Example (cont'd)

» Hence
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Example (cont'd)

» Hence

» f(x) >0 for x < —

3
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Example (cont'd)

> f(x) >0 for x < —

5V
> f’(x)<0for—\/§<x<0,
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Example (cont'd)

> f/(x) >0 for x < —/3

5

> f’(x)<0for—\/§<x<0,

» f(x) <0for0<x<,/2
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Example (cont'd)

> f/(x) >0 for x < —y/2,

> f’(x)<0for—\/§<x<0,
» f(x) <0for0<x<,/3

» and f’(x) > 0 for x > \/g
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Example (cont'd)

» Hence f is
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Example (cont'd)

» Hence f is

> increasing on (—oo,—\/é),

Dan Sloughter (Furman University)

Increasing and Decreasing Functions



Example (cont'd)

» Hence f is

> increasing on (—oo,—

» decreasing on (—
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Example (cont'd)

» Hence f is

> increasing on (— ,—\/é),
» decreasing on (—

3
§7O)y
» decreasing on (0,
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Example (cont'd)

» Hence f is

> increasing on (—oo,—\/é),

» decreasing on (— 3 0),

» decreasing on (0, \/%
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Example (cont'd)

» Graph of f(x) = x> — x3:
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Example

> Let f(x)

I
winy

X
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Example

> Let f(x)

» Then
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Example

> Let f(x) =x
» Then

wIin

2
f'(x) = gx_% =
other x.

3x5
» It follows that f’(x) is not defined at x =0 and f’(x) # 0 for all
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Example

> Let f(x)
» Then

wIin

X

3

3x3
» It follows that f/(x) is not defined at x = 0 and f’(x) # 0 for all
other x.

» Moreover, f'(x) < 0 for x < 0 and f’(x) > 0 for x > 0.
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Example

wIin

> Let f(x) =x
> Then
f'(x) = gx_% = 21.
3 3x3
» It follows that f/(x) is not defined at x = 0 and f’(x) # 0 for all
other x.
» Moreover, f'(x) < 0 for x < 0 and f’(x) > 0 for x > 0.

v

So f is decreasing on (—o0,0) and increasing on (0, c0).
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Example (cont'd)

» Graph of f(x) = x
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