Increasing and Decreasing Functions Mathematics 11: Lecture 24

Dan Sloughter

Furman University

October 24, 2007

Dan Sloughter (Furman University) Increasing and Decreasing Functions

We say a function f is increasing on an interval I if, for every x₁ and x₂ in I, if x₁ < x₂, then f(x₁) < f(x₂).</p>

3. 3

- T

- We say a function f is *increasing* on an interval I if, for every x₁ and x₂ in I, if x₁ < x₂, then f(x₁) < f(x₂).</p>
- We say a function f is *decreasing* on an interval I if, for every x₁ and x₂ in I, if x₁ < x₂, then f(x₁) > f(x₂).

- We say a function f is *increasing* on an interval I if, for every x₁ and x₂ in I, if x₁ < x₂, then f(x₁) < f(x₂).</p>
- We say a function f is decreasing on an interval I if, for every x₁ and x₂ in I, if x₁ < x₂, then f(x₁) > f(x₂).
- Example: Let $f(x) = x^2$.

- We say a function f is *increasing* on an interval I if, for every x₁ and x₂ in I, if x₁ < x₂, then f(x₁) < f(x₂).</p>
- We say a function f is *decreasing* on an interval I if, for every x₁ and x₂ in I, if x₁ < x₂, then f(x₁) > f(x₂).
- Example: Let $f(x) = x^2$.
 - If $0 < x_1 < x_2$, then $x_1^2 < x_2^2$, so f is increasing on $(0, \infty)$.

- We say a function f is *increasing* on an interval I if, for every x₁ and x₂ in I, if x₁ < x₂, then f(x₁) < f(x₂).</p>
- We say a function f is *decreasing* on an interval I if, for every x₁ and x₂ in I, if x₁ < x₂, then f(x₁) > f(x₂).
- Example: Let $f(x) = x^2$.
 - If $0 < x_1 < x_2$, then $x_1^2 < x_2^2$, so f is increasing on $(0, \infty)$.
 - If $x_1 < x_2 < 0$, then $x_1^2 > x_2^2$, so *f* is decreasing on $(-\infty, 0)$.

Suppose f is differentiable on (a, b) with f'(x) > 0 for all x in (a, b), and let x₁ and x₂ be points in (a, b) with x₁ < x₂.</p>

- Suppose f is differentiable on (a, b) with f'(x) > 0 for all x in (a, b), and let x₁ and x₂ be points in (a, b) with x₁ < x₂.</p>
- ► By the Mean Value Theorem, there exists a *c* between x₁ and x₂ for which

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

- Suppose f is differentiable on (a, b) with f'(x) > 0 for all x in (a, b), and let x₁ and x₂ be points in (a, b) with x₁ < x₂.</p>
- By the Mean Value Theorem, there exists a c between x₁ and x₂ for which

$$f'(c) = rac{f(x_2) - f(x_1)}{x_2 - x_1}$$

• Since f'(c) > 0 and $x_2 - x_1 > 0$, it follows that $f(x_1) < f(x_2)$.

- Suppose f is differentiable on (a, b) with f'(x) > 0 for all x in (a, b), and let x₁ and x₂ be points in (a, b) with x₁ < x₂.
- By the Mean Value Theorem, there exists a c between x₁ and x₂ for which

$$f'(c) = rac{f(x_2) - f(x_1)}{x_2 - x_1}$$

- ▶ Since f'(c) > 0 and $x_2 x_1 > 0$, it follows that $f(x_1) < f(x_2)$.
- ▶ Hence *f* is increasing on (*a*, *b*).

- Suppose f is differentiable on (a, b) with f'(x) > 0 for all x in (a, b), and let x₁ and x₂ be points in (a, b) with x₁ < x₂.
- By the Mean Value Theorem, there exists a c between x₁ and x₂ for which

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

- Since f'(c) > 0 and $x_2 x_1 > 0$, it follows that $f(x_1) < f(x_2)$.
- ▶ Hence *f* is increasing on (*a*, *b*).
- ► Similarly, if f'(x) < 0 for all x in (a, b), it follows that f is decreasing on (a, b).</p>

▶ Suppose *f* is differentiable on (*a*, *b*).

э.

< 🗇 🕨

э

Suppose f is differentiable on (a, b).
Then

э.

< 🗇 🕨 🔸

э

Theorem

- Suppose f is differentiable on (a, b).
- Then
 - if f'(x) > 0 for all x in (a, b), then f is increasing on (a, b);

3 x 3

4 / 13

A 🖓

Theorem

- ▶ Suppose *f* is differentiable on (*a*, *b*).
- Then
 - if f'(x) > 0 for all x in (a, b), then f is increasing on (a, b);
 - if f'(x) < 0 for all x in (a, b), then f is decreasing on (a, b);

Theorem

- Suppose f is differentiable on (a, b).
- Then
 - if f'(x) > 0 for all x in (a, b), then f is increasing on (a, b);
 - if f'(x) < 0 for all x in (a, b), then f is decreasing on (a, b);
 - if f'(x) = 0 for all x in (a, b), then f is constant on (a, b).

• Let $f(x) = 2x^3 + 3x^2 - 12x + 1$.

3

・ 何 ト ・ ヨ ト ・ ヨ ト

$$f'(x) = 6x^2 + 6x - 12 = 6(x^2 + x - 2) = 6(x + 2)(x - 1).$$

臣

・ロト ・虚ト ・ モト

$$f'(x) = 6x^2 + 6x - 12 = 6(x^2 + x - 2) = 6(x + 2)(x - 1).$$

• Then
$$f'(x) = 0$$
 when $x = -2$ or $x = 1$.

・ロト ・虚ト ・ モト

æ

$$f'(x) = 6x^2 + 6x - 12 = 6(x^2 + x - 2) = 6(x + 2)(x - 1).$$

• Then
$$f'(x) = 0$$
 when $x = -2$ or $x = 1$.

• When x < -2, both x + 2 < 0 and x - 1 < 0, so f'(x) > 0.

э

5 / 13

(4 個) トイヨト イヨト

$$f'(x) = 6x^2 + 6x - 12 = 6(x^2 + x - 2) = 6(x + 2)(x - 1).$$

• Then
$$f'(x) = 0$$
 when $x = -2$ or $x = 1$.

- ▶ When x < -2, both x + 2 < 0 and x 1 < 0, so f'(x) > 0.
- ▶ When -2 < x < 1, x + 2 > 0 but x 1 < 0, so f'(x) < 0.

3. 3

- T

$$f'(x) = 6x^2 + 6x - 12 = 6(x^2 + x - 2) = 6(x + 2)(x - 1).$$

• Then
$$f'(x) = 0$$
 when $x = -2$ or $x = 1$.

- ▶ When x < -2, both x + 2 < 0 and x 1 < 0, so f'(x) > 0.
- ▶ When -2 < x < 1, x + 2 > 0 but x 1 < 0, so f'(x) < 0.
- When x > 1, both x + 2 > 0 and x 1 > 0, so f'(x) > 0.

Note: we could also check the sign of f' on these intervals by evaluating f' at selected points.

- Note: we could also check the sign of f' on these intervals by evaluating f' at selected points.
- ► For example,

- Note: we could also check the sign of f' on these intervals by evaluating f' at selected points.
- For example,
 - ▶ f'(-3) = 24 implies, by the Intermediate Value Theorem, that f'(x) > 0 on $(-\infty, -2)$,

- Note: we could also check the sign of f' on these intervals by evaluating f' at selected points.
- For example,
 - ▶ f'(-3) = 24 implies, by the Intermediate Value Theorem, that f'(x) > 0 on $(-\infty, -2)$,
 - f'(0) = -12, so f'(x) < 0 on (-2, 1),

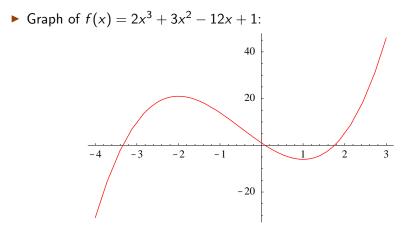
- Note: we could also check the sign of f' on these intervals by evaluating f' at selected points.
- For example,
 - f'(-3) = 24 implies, by the Intermediate Value Theorem, that f'(x) > 0 on (-∞, -2),
 f'(0) = -12, so f'(x) < 0 on (-2, 1).
 - f'(2) = 24, so f'(x) > 0 on $(1, \infty)$.

- Note: we could also check the sign of f' on these intervals by evaluating f' at selected points.
- For example,
 - f'(-3) = 24 implies, by the Intermediate Value Theorem, that f'(x) > 0 on (-∞, -2),
 f'(0) = -12, so f'(x) < 0 on (-2, 1),
 f'(2) = 24, so f'(x) > 0 on (1, ∞).
- Hence we conclude that

- Note: we could also check the sign of f' on these intervals by evaluating f' at selected points.
- For example,
 - f'(-3) = 24 implies, by the Intermediate Value Theorem, that f'(x) > 0 on (-∞, -2),
 f'(0) = -12, so f'(x) < 0 on (-2, 1),
 f'(2) = 24, so f'(x) > 0 on (1, ∞).
- Hence we conclude that
 - f is increasing on $(-\infty, -2)$,

- Note: we could also check the sign of f' on these intervals by evaluating f' at selected points.
- For example,
 - f'(-3) = 24 implies, by the Intermediate Value Theorem, that f'(x) > 0 on (-∞, -2),
 f'(0) = -12, so f'(x) < 0 on (-2, 1),
 f'(2) = 24, so f'(x) > 0 on (1, ∞).
 - r(2) = 24, so r(x) > 0 on
- Hence we conclude that
 - f is increasing on $(-\infty, -2)$,
 - ▶ f is decreasing on (-2, 1),

- Note: we could also check the sign of f' on these intervals by evaluating f' at selected points.
- For example,
 - f'(-3) = 24 implies, by the Intermediate Value Theorem, that f'(x) > 0 on (-∞, -2),
 f'(0) = -12, so f'(x) < 0 on (-2, 1),
 - f'(2) = 24, so f'(x) > 0 on $(1, \infty)$.
- Hence we conclude that
 - f is increasing on $(-\infty, -2)$,
 - f is decreasing on (-2, 1),
 - and f is increasing on $(1,\infty)$.



3 x 3

• Let
$$f(x) = x^5 - x^3$$
.

æ

・ロト ・虚ト ・ モト

► Let
$$f(x) = x^5 - x^3$$
.
► Then
 $f'(x) = 5x^4 - 3x^2 = x^2(5x^2 - 3).$

臣

・ロト ・虚ト ・ モト

(日) (四) (王) (王)

æ

and $5x^2 - 3 > 0$ for all other x.

3

- 4 週 ト - 4 三 ト - 4 三 ト

► Hence

æ

(日)

Hence

• f'(x) > 0 for $x < -\sqrt{\frac{3}{5}}$,

э

- 4 週 ト - 4 三 ト - 4 三 ト

Hence

•
$$f'(x) > 0$$
 for $x < -\sqrt{\frac{3}{5}}$,

•
$$f'(x) < 0$$
 for $-\sqrt{\frac{3}{5}} < x < 0$,

æ

Hence

•
$$f'(x) > 0$$
 for $x < -\sqrt{\frac{3}{5}}$,
• $f'(x) < 0$ for $-\sqrt{\frac{3}{5}} < x < 0$,

•
$$f'(x) < 0$$
 for $0 < x < \sqrt{\frac{3}{5}}$,

・ロト ・ 四ト ・ ヨト ・ ヨト

Hence

•
$$f'(x) > 0$$
 for $x < -\sqrt{\frac{3}{5}}$,

•
$$f'(x) < 0$$
 for $-\sqrt{\frac{3}{5}} < x < 0$,

•
$$f'(x) < 0$$
 for $0 < x < \sqrt{\frac{3}{5}}$,

• and
$$f'(x) > 0$$
 for $x > \sqrt{\frac{3}{5}}$.

э

(日)

► Hence *f* is

э

- Hence f is
 - increasing on $\left(-\infty, -\sqrt{\frac{3}{5}}\right)$,

프 에 에 프 어

< 🗇 🕨 🔸

э

- ▶ Hence *f* is
 - increasing on $\left(-\infty, -\sqrt{\frac{3}{5}}\right)$,
 - decreasing on $\left(-\sqrt{\frac{3}{5}},0\right)$,

3

< 🗇 🕨 🔸

▶ Hence *f* is

- increasing on $\left(-\infty, -\sqrt{\frac{3}{5}}\right)$,
- decreasing on $\left(-\sqrt{\frac{3}{5}},0\right)$,
- decreasing on $\left(0, \sqrt{\frac{3}{5}}\right)$,

3

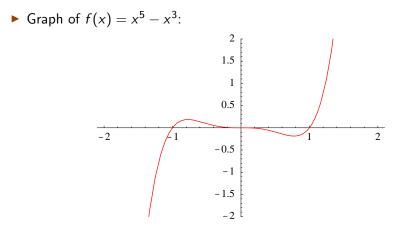
< ∃ >

A 🖓 🕨 🔺

Hence f is

- increasing on $\left(-\infty, -\sqrt{\frac{3}{5}}\right)$,
- decreasing on $\left(-\sqrt{\frac{3}{5}},0\right)$,
- decreasing on $\left(0, \sqrt{\frac{3}{5}}\right)$,
- and increasing on $\left(\sqrt{\frac{3}{5}},\infty\right)$.

A 🖓



э

→ Ξ →

▲ 伊 → ▲ 王

• Let $f(x) = x^{\frac{2}{3}}$.

æ

< □ > < □ > < □ >

• Let
$$f(x) = x^{\frac{2}{3}}$$
.

► Then

$$f'(x) = \frac{2}{3}x^{-\frac{1}{3}} = \frac{2}{3x^{\frac{1}{3}}}.$$

æ

・ロト ・虚ト ・ モト

$$f'(x) = \frac{2}{3}x^{-\frac{1}{3}} = \frac{2}{3x^{\frac{1}{3}}}$$

It follows that f'(x) is not defined at x = 0 and f'(x) ≠ 0 for all other x.

< 🗇 🕨 🔸

3. 3

• Let
$$f(x) = x^{\frac{2}{3}}$$
.

$$f'(x) = \frac{2}{3}x^{-\frac{1}{3}} = \frac{2}{3x^{\frac{1}{3}}}.$$

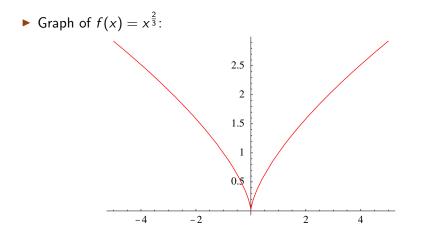
- It follows that f'(x) is not defined at x = 0 and f'(x) ≠ 0 for all other x.
- Moreover, f'(x) < 0 for x < 0 and f'(x) > 0 for x > 0.

• Let
$$f(x) = x^{\frac{2}{3}}$$
.

Then

$$f'(x) = \frac{2}{3}x^{-\frac{1}{3}} = \frac{2}{3x^{\frac{1}{3}}}.$$

- It follows that f'(x) is not defined at x = 0 and f'(x) ≠ 0 for all other x.
- Moreover, f'(x) < 0 for x < 0 and f'(x) > 0 for x > 0.
- ▶ So f is decreasing on $(-\infty, 0)$ and increasing on $(0, \infty)$.



э

13 / 13

.∃ →

< 🗇 🕨 🔸