Lecture 6: Types of Functions

6.1 Basic definitions

Definition If $a_{0}, a_{1}, \ldots, a_{n}$ are constants and n is a nonnegative integer, then the function

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

is called a polynomial.
Note: The degree of a polynomial is the highest power of x in the polynomial with a nonzero coefficient.

Example $f(x)=3 x^{2}+4 x-6$ is a polynomial of degree 2 , that is, a quadratic polynomial.
Example $g(t)=5 t-6$ is a first degree polynomial, sometimes called a linear function.
Definition If p and q are both polynomials, then the function

$$
f(x)=\frac{p(x)}{q(x)}
$$

is called a rational function.
Example $\quad f(x)=\frac{x^{2}-6}{x+5}$ is a rational function.
Example $\quad f(x)=\frac{1}{x}$ is a rational function. Recall that the graph of f is an example of a hyperbola with the x-axis and y-axis for asymptotes.

Example $f(x)=x^{2}-\frac{6}{x^{2}}=\frac{x^{4}-6}{x^{2}}$ is a rational function.

Definition Any function which may be built up using the operations of addition, subtraction, multiplication, division, and taking roots is called an algebraic function.

Example $f(x)=\sqrt{x}$ is an algebraic function.
Example $f(x)=\left(x^{2}+2 x+3\right)^{\frac{2}{3}}$ is an algebraic function.

Note: Every polynomial is a rational function and every rational function is an algebraic function.

Note: For integers p and $q, q \neq 0, x^{\frac{p}{q}}=\sqrt[q]{x^{p}}$. For example, $4^{\frac{3}{2}}=\sqrt{4^{3}}=\sqrt{6} 4=8$.

Definition A function which is not an algebraic function is called a transcendental function.

Example $\quad f(x)=\ln (15 x+6)$ is a transcendental function.

Example The trigonometric functions are all transcendental functions.

