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INTEGERS OF THE FORM a2 ± b2

ROBERT ZEMAN

Abstract. This paper explores which integers can be expressed in the form

a2±2b2 by using rings of the form Z[
√

d], particularly when d = 2 and d = −2.

1. Introduction and preliminaries

It has been proven that an integer n can be expressed as the sum of two squares
if and only if each prime p ≡ 3 (mod 4) that divides n occurs to an even power in
the prime factorization of n [1, Theorem 13.3]. The goal of this work is to describe
which integers can be expressed in the forms a2 + 2b2 and a2 − 2b2.

We will assume familiarity with elementary notions from divisor theory in inte-
gral domains such as can be found in [2]. In particular, for a square-free integer d,
we shall make frequent use of the norm function on Z[

√
d]: for x = s+t

√
d ∈ Z[

√
d],

we set N(x) = s2−dt2. We collect for ease of reference some of the results we shall
need. Proofs of our first two results can be found in [2].

Lemma 1. Let d be a square-free integer., and let a, b ∈ Z[
√

d]. Then:

(i) a is a unit of Z[
√

d] if and only if N(a) = ±1.
(ii) N(a) = 0 if and only if a = 0.

(iii) The norm function is multiplicative; that is, N(ab) = N(a)N(b).

Lemma 2. If d is a square-free integer, a ∈ Z[
√

d], and N(a) = p, where p is
prime, then a is irreducible in Z[

√
d].

Lemma 3. Let p be an odd prime. If p can be expressed in the form a2 + 2b2, then
p ≡ 1 or 3 (mod 8), and if p can be expressed in the form a2−2b2, then p ≡ 1 or 7
(mod 8).

Proof. One can easily see that a2, b2 ≡ 0, 1, or 4 (mod 8). Thus 2b2 ≡ 0 or 2
(mod 8), and so a2 + 2b2 ≡ 0, 1, 2, 3, 4 or 6 (mod 8) and a2 − 2b2 ≡ 0, 1, 2, 4, 6 or 7
(mod 8). Therefore, given an odd prime p = a2 + 2b2, then p ≡ 1 or 3 (mod 8) and
given an odd prime p = a2 − 2b2, then p ≡ 1 or 7 (mod 8).

Lemma 4. Let p be an odd prime. Then 2 is a quadratic residue of p when
p ≡ 1 or 7 (mod 8), and −2 is a quadratic residue of p when p ≡ 1 or 3 (mod 8).

Proof. See [1].
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2. Characterization of integers of the form a2 ± 2b2

We now specialize Z[
√

d] to the cases d = ±2.

Theorem 5. If a ∈ Z[
√
−2] and N(a) = p2, p prime, with p ≡ 5 or 7 (mod 8),

then a is irreducible in Z[
√
−2]. If a ∈ Z[

√
2] and N(a) = p2, p prime, with

p ≡ 3 or 5 (mod 8), then a is irreducible in Z[
√

2].

Proof. Let a ∈ Z[
√

d] with d = ±2, and assume that N(a) = p2 with p prime.
Suppose that a = bc, with b, c ∈ Z[

√
d]. In order to prove that a is irreducible, we

wish to show that N(b) = 1 or N(c) = 1. If this is false, then N(b) = N(c) = ±p.
If d = −2 and p ≡ 5 or 7 (mod 8), then p = N(b) = s2 + 2b2 for s, t ∈ Z, a
contradiction to Lemma 3. A similar contradiction is obtained in the case d = 2
and p ≡ 3 or 5 (mod 8).

Lemma 6. Z[
√
−2] and Z[

√
2] are unique factorization domains.

Proof. A proof that Z[
√
−2] is a unique factorization can be found in [2]. We

present a unified proof for both cases.
Let a = x + y

√
±2 and b = s + t

√
±2 6= 0. Then |N(a)| = |x2 ∓ 2y2| and

|N(ab)| = |x2∓ 2y2||s2∓ 2t2|. Since |s2∓ 2t2| ≥ 1, |x2∓ 2y2| ≤ |x2∓ 2y2||s2∓ 2t2|.
Hence |N(a)| ≤ |N(ab)|.

Now,

a

b
=

x + y
√
±2

s + t
√
±2

=
(x + y

√
±2)(s− t

√
±2)

s2 ∓ 2t2
=

xs∓ 2yt

s2 ∓ 2t2
+

(ys− xt)
√
±2

s2 ∓ 2t2
.

Let c = (xy∓2yt)/(s2∓2t2) and d = (ys−xt)/(x2∓2t2). Then c, d ∈ Q and there
are integers m, n such that |c−m| ≤ 1/2 and |d− n| ≤ 1/2. Therefore, a = b(c +
d
√
±2) = b((c−m+m)+(d−n+n)

√
±2 = b(m+n

√
±2)+b((c−m)+(d−n)

√
±2).

Then a = bq + r, where q = m + n
√
±2 and r = b((c −m) + (d − n)

√
±2. Since

r = a − bq, and a, b, q ∈ Z[
√
±2], then r ∈ Z[

√
±2]. Also, |N(r)| = |N(b)||N(c −

m) + (d − n)
√
±2| ≤ |N(b)||(1/2)2 ∓ 2(1/2)2| ≤ |N(b)|. That is, a = bq + r with

0 ≤ |N(r)| < |N(b)|.
Therefore, Z[

√
−2] and Z[

√
2] are Euclidean domains and hence are unique fac-

torization domains.

Theorem 7. Let p be an odd prime. If p ≡ 1 or 3 (mod 8), then p is not irreducible
in Z[

√
−2], and if p ≡ 1 or 7 (mod 8), then p is not irreducible in Z[

√
2].

Proof. Given p ≡ 1 or 3 (mod 8), then −2 is a quadratic residue of p by Lemma 4.
Therefore, there exists some x ∈ Z such that p|(x2 + 2). In Z[

√
−2], x2 + 2 =

(x+
√
−2)(x−

√
−2). Therefore, p|(x+

√
−2)(x−

√
−2). If p were irreducible, then

p|x +
√
−2 or p|x −

√
−2 because Z[

√
−2] is a unique factorization domain. This

produces an equation x±
√
−2 = p(a + b

√
−2) from which it follows that pb = ±1.

This is impossible. Therefore, p is not irreducible in Z[
√
−2].

Given p ≡ 1 or 7 (mod 8), then 2 is a quadratic residue of p by Lemma 4.
Therefore, there exists some x ∈ Z such that p|(x2−2). Since x2−2 = (x+

√
2)(x =√

2), irreducibility of p would imply that p|x +
√

2 or p|x−
√

2, because Z[
√

2] is a
unique factorization domain. This produces an equation x±

√
2 = p(a+b

√
2), from

which it follows that pb = ±1. Again, this is impossible, and p is not irreducible in
Z[
√

2].
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Theorem 8. Let p be an odd prime. If p ≡ 1 or 3 (mod 8), then p can be written
in the form a2 + 2b2, and if p ≡ 1 or 7 (mod 8), then p can be written in the form
a2 − 2b2.

Proof. Given p ≡ 1 or 3 (mod 8), then p is not irreducible in Z[
√
−2], and given

p ≡ 1 or 7 (mod 8), then p is not irreducible in Z[
√

2] by Theorem 7. Then p =
(a + b

√
∓2)(c + d

√
∓2), where neither term on the right is a unit. Then p2 =

(a2 ± 2b2)(c2 ± 2d2). Therefore, p = a2 ± 2b2 = c2 ± 2d2 (because a2 ± 2b2 and
c2 ± 2d2 are not units). The desired conclusion follows easily.

Lemma 9. The product of two numbers of the form a2 ± 2b2 is itself of the form
a2 ± 2b2.

Proof. We have

(a2 ± 2b2)(c2 ± 2d2) = (a + b
√
∓2)(a− b

√
∓2)(c + d

√
∓2)(c− d

√
∓2)

= (a + b
√
∓2)(c + d

√
∓2)(a− b

√
∓2)(c− d

√
∓2)

= ((ac∓ 2bd) + (ad + bc)
√
∓2)((ac∓ 2bd)− (ad + bc)

√
∓2)

= (ac∓ 2bd)2 ± 2(ad + bc)2

.

We are now ready to state and prove the main result of this work.

Theorem 10. Let n = N2m, where m is square-free. Then n can be written in
the form a2 + 2b2 if and only if m contains no prime factor p such that p ≡ 5 or 7
(mod 8), and n can be written in the form a2 − 2b2 if and only if m contains no
prime factor p such that p ≡ 3 or 5 (mod 8).

Proof. Suppose that we have n = N2m = a2 ± 2b2. Let d = gcd(a, b), and write
a = dr, b = ds, so that n = N2m = d2(r2± 2s2). Then d2|N2m, and, given that m
is square-free, we have that d2|N2. Hence we can write (N2/d2)m = r2 ± 2s2 = t
for some integer t. Let p be a prime factor of t. Then r2± 2s2 ≡ 0 (mod m). Now,
since r and s are relatively prime, at least one must be relatively prime to p. If s is
not relatively prime to p, then r2 = t ∓ 2s2, and, if p|s, then p|r, a contradiction.
Hence it must be that p is relatively prime to s. Thus there exists some s′ such
that ss′ ≡ 1 (mod p). Multiplying the equation r2 ± 2s2 ≡ 0 (mod p) then yields
(rs′)2± 2 ≡ 0 (mod p), or (rs′)2 ≡ ∓2 (mod p). Thus ∓2 is a quadratic residue of
p. Recall that -2 is a quadratic residue of p if and only if p ≡ 1 or 3 (mod 8), and
2 is a quadratic residue of p if and only if p ≡ 1 or 7 (mod 8) by Lemma 4. Thus
if n is of the form a2 + 2b2, then each prime factor of (t and hence) m satisfies the
condition p ≡ 1 or 3 (mod 8), and if n is of the form a2 − 2b2, then each prime
factor p of m satisfies the condition p ≡ 1 or 7 (mod 8).

For the converse, the condition on m and Theorem 8 guarantee that each odd
prime factor of m can be written in the appropriate form. Of course, 2 = 02+2·12 =
22 − 2 · 12. Thus each prime factor of m can be written in the appropriate form,
and the result follows from Lemma 9.

Theorem 10 is our desired result. It shows that a number n can be written in the
form a2 + 2b2 (respectively, a2 − 2b2) if and only if each prime p ≡ 5 of 7 (mod 8)
(respectively, p ≡ 3 or 5 (mod 8)) that divides n occurs to an even power in the
prime factorization of n.
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