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PATHS AND CIRCUITS IN G-GRAPHS OF CERTAIN
NON-ABELIAN GROUPS

A. DEWITT*, A. RODRIGUEZ*, AND J. DANIEL*

ABSTRACT. In [BJRTDOS]|, necessary and sufficient conditions were given for
the existence of Eulerian and Hamiltonian paths and circuits in the G-graph
of the dihedral group D,. In this paper, we consider the G-graphs of the
quasihedral, modular, and generalized quaternion group. These groups are of
rank 2 and we consider only the graphs I'(G, S) where |S| = 2.

1. INTRODUCTION

Let G be a finitely generated group with generating set S = {s1,---,sx}. For a
subgroup H of G, define the subset Ty of G to be a left transversal for H if {zH |
x € Ty} is precisely the set of all left cosets of H in G. For each s; € S'let H; = (s;).
Associate a simple graph I'(G, S) to (G, S) with vertex set V = {z;H; | z; € T, }.
Two distinct vertices x;H; and z;Hy, in V are joined by an edge if x;(s;) N x;(sk)
is nonempty. The edge set E consists of pairs (z;H;,x;Hy). I'(G,S) defined this
way has no multiedge or loop. A multiedge graph was defined similarly in 2004.
Many of the results about this graph [[BG04], [BGLO05], [BG05], and [BGO7]] can
be modified for the simple graph, I'(G, S), [D08]. The main object of this paper
is to study the existence of Eulerian and Hamiltonian paths and circuits in the G-
graphs of the quasihedral, modular, and generalized quaternion group. To explore
the existence of Eulerian paths and circuits in I'(G, S), we recall a few theorems of
Euler and a result from [BJRTDOS].

Theorem 1. (Euler) Let T' be a nontrivial connected graph. Then T' has an Euler-
ian circuit if and only if every vertex is of even degree.

Theorem 2. (Euler) Let T' be a nontrivial connected graph. Then T' has an Euler-
ian path if and only if T has exactly two vertices of odd degree. Furthermore, the
path begins at one of the vertices of odd degree and terminates at the other.

Lemma 3. [BJRTDOS] If G is a group with generating set S = {s1,---,8,} and
Si.i = |(si) N (s;)|, then the degree of the vertex (s;), denoted deg((s;)), is

degl(o) = (Slslfs) -1
j=1
Remark 1. Notice that deg((s;)) = deg(x;(s;)) for all z;(s;) in V;.
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We consider the G-graphs of the quasihedral, modular, and generalized quater-
nion group. We start with a few examples of the graphs.
Ezxample 1.

(i) The modular group, M, has presentation (s,t | s® = t?> = e, st = ts°). Letting
S = {s,t}, the G graph of this group is I'(M, S).

N

Ko g

(i) The quasihedral group, QS, has presentation (s,t | s® = t2 = e, st = ts3).
Letting S = {s, ts}, the G graph of this group is T'(Q.S, S).

Ko 4
(iii) The generalized quaternion group, Qan, has presentation
(s,t| 2 = e,szn_2 =% tst™1 = 571).

Letting n = 3,5 = {s,t}, the G graph of this group is I'(Q23, 5).

X

Ky o

The next lemma pertains to all of the groups in question.
Lemma 4. Let G = M,QS, or Q2n and let 7 be an odd integer then

(s7) = (s) = {s,82,--- ,sI*I71 e}.
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Proof. For each of the above groups, |s| is even. So ged(4, |s|) = 1 and there exist
x,y € Z such that jx + |s|ly = 1. So
gl = giztlsly
gl = giTglsly
= ()7 (sl
st = (s7)"(e)?
Therefore st = (s7)* and (s) = (s7).

2. THE MODULAR GROUP

Recall that the modular group, M, has presentation
(s,t] 8% =12 = e, st = ts®). Next we determine the existence of Eulerian and Hamil-

tonian circuits and paths.
Lemma 5. If G is the modular group and n is odd, then

(ts™) = (ts) = {ts,s5,ts7,s* ts°, %, ts>, e}.
Lemma 6. If G is the modular group, then (ts?) = (ts®) = {ts?,s% ts5 e}.
Lemma 7. If G is the modular group and n =2 or 6, then |(s) N (ts™)| = 2.
Lemma 8. If G is the modular group and n is odd, then |(s) N (ts™)| = 4.

Theorem 9. If G is the modular group, and S is a minimal generating set, then
I'(G,S) contains an Eulerian circuit.

Proof. Let G be the modular group and S be a minimal generating set. Then
S = {s",ts*}, where nisodd, 1 <n <7,and 0 < k < 7or S = {ts", ts™}, where
n is odd and m is even. By using the lemmas above there exists three distinct

graphs.
case 1) Let S = {s™,t} where n is odd, then S1 2 = Sz1 = [(s") N (t)] = 1 and
2\ (51 8 8 8 8
deg <J§Sl >_1_S11+512 1=§—|—I—1:8,Whichiseven.
(s ) 2 2 2 2 .
Similarly deg( —1l=—+——-1=-+—-—1=2, which is
y deg({ (Z 52, Sa1 oo 1 2

even. This graph is KQ}g and contains an Eulerian circuit.
case ii) Let S = {s" tsm} where n, m are odd, then Sy 2 = So1 = [(s")N{ts™)| =

[(s 8 8 8 8 Co

4 and d = — —1=-+4+—-—1=2, which is

and deg(( (Z S S +S12 8+4 , which is

even. Similarly deg((ts™ <Z|S > 5’8 +Si,1_§+§71_2
2.3 2,1 2,2

7=1
which is even. This graph is K3 > and contains an Eulerian circuit.

case iii) Let S = {s",ts*} where n is odd and k = 2 or 6, then S; 2 =251 =

(s 8 8 8 8
n = 2andd -2 1="42 1=4
(™) (ts*) | = 2 and deg({ (ZSM e et B
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2 2 4 4
which is even. Similarly deg((ts*) <Z 52) > = SiJrSifl = 5+171 =
2,j 2,1 02,2

2, which is even. This graph is Ks 4 and contains an Eulerian circuit.
case iv) Let S = {s ,ts'} where n is odd, then S5 = Sa1 = [(s") N {ts?)| =1

8 8 8 8
and deg((s <Z|SU> E+E_1_§+I_l_8 which is even.
2
2 2 2 2
Similarly deg({ts*) (ZS2 > :ng@fl:IJri—l:Q,whiCh
J

is even. This graph is Kg’_g and contains an Eulerian circuit.

case v) Let S = {¢s",t} where n is odd, then Sy 2 = Sz1 = |(ts") N ()| =1 and
2\ |(s1)] 8 8 8 8
deg(<t3”>):(z ! )—1:+—1 §+7—1—8 which is even.

Jj=1

- 2, |(s2)] 2 . 2 2 2 o
Similarly deg((t)) = Z - —-1= 51 + 5o 1= ] + 3~ 1 =2, which is
'71 k) k)

even. This graph is K> g and contains an Eulerian circuit.
case vi) Let S = {ts",ts*} where n is odd and k = 2 or 6, then S; 2=2581=

(s > 8 8 8 8
ts™ = 2 and deg((ts™ —1l=—+—-1==-4--1=
(s (t5")] a(( (ZS S, TR
4, which is even. Similarly deg((ts"*) (Z ) = i + 2 1=
Y 2 So1 | San
4 4 Lo . L
3 + 1 1 = 2, which is even. This graph is K3 4 and contains an Eulerian circuit.
case vii) Let S = {ts ,ts*} where n is odd, then S; o = Sz 1 = |[(ts") N {tst)| =1
[(s 8 8 8 8
and deg((ts™) (ZSLJ S +@_1_§+I_1_8 which is

2
2 2 2 2
even. Similarly deg((ts*)) = <Z|<82>|) —l=——4 — —1==4+=—-1=2,
j=1 727 2
which is even. This graph is K3 g and contains an Eulerian circuit.

Remark 2. For all minimal generating sets, I'(M, S) does not contain an Eulerian
path.

Theorem 10. If G is the modular group, and S = {s",ts™} where n,m are odd,
then T'(G, S) contains a Hamiltonian circuit and a Hamiltonian path.

Proof. The vertex set of I'(M,S) is V(I'(M, S)) = {(s™),t(s™), (ts™), t{ts™)} . A
Hamiltonian circuit is given by

(s™), (ts™), (™), t(ts™), (")

A Hamiltonian path is given by

(™), (ts™), t{(s™), t{ts™).
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Remark 3. S = {s",ts™} where n,m are odd is the only minimal generating set of
M that yields a graph that contains a Hamiltonian circuit (path).

3. THE QUASIHEDRAL GROUP

Recall that the quasihedral group, .5, has presentation
(s,t] 8% =12 = e, st = ts3). Next we determine the existence of Eulerian and Hamil-
tonian circuits and paths.

Lemma 11. IfG is the quasihedral group and n is 1 or 5, then (ts") = {ts, s* ts°, e}.
Lemma 12. IfG is the quasihedral group andn is 3 or 7, then (ts") = {ts®,s*, ts7, e}.
Lemma 13. If G is the quasihedral group and n is even, then (ts™) = {ts", e}.
Lemma 14. If G is the quasihedral group and n is even, then |(s) N (ts™)| = 1.
Lemma 15. If G is the quasihedral group and n is odd, then |(s) N (ts™)| = 2.

Theorem 16. If G is the quasihedral group, and S is a minimal generating set,
then T'(G, S) contains a Eulerian circuit.

Proof. Let G be the quasihedral group and S be a minimal generating set. Then
S = {s",ts"}, where nisodd and 1 <n < 7and 1 <k <3 or S = {ts", ts™},
where n is odd and m is even. By using the above lemmas, there exists three
distinct graphs.

casei) Let S = {s" tsm} where n, m are odd, then S1 2 = S21 = |[(s")N{ts™)| =

|(s 8 8 8 8 L
2 and d —+ — —1= -+ = —1 =4, which
and deg(( (Z S, 511 +51,2 8+2 , which is

2
o |<52>|) 4 4 4 4
even. Similarly, deg((ts™)) = E —l=—t——1==-4-—-1=2,
y g(< >) <j_1 SQ’J' SQ 1 522 2 4

which is even. This graph is K3 4 and contains an Eulerian circuit.
case ii) Let S = {s",ts™}, where n is odd and m is even, then Sy 2 = So1 =

[(s ) 8 8 8 8
s™)N =1 and deg( l=—4——-1=—4-—-1=8,
)0t o (Z ) 1 1= 3
hich i Similarly, deg((ts™ (Z' ) 2,2 -
which is even. Similarly, deg((ts = 2 1 =
¥, deg({ 52 T %1 | Sas
2 2 . . .
1 + 3~ 1 = 2, which is even. This graph is K> g and contains an Eulerian circuit.
case iil) Let S = {ts", ts™} where n is odd and m is even, then S1 2 = Sz 1 =
[(s ) 4 4 4 4
ts™)N =1 and deg((ts™) —l=—4—"——1=-4-—1=
(e s ol (z - 1= 1+
2
N _ |(s2>|> 2 2
4, which is even. Similarly deg({ts™)) = - 1l=—=—+—-1=
y deg((ts™)) (Z 5 e
2 2

1 + 3~ 1 = 2, which is even. By applying FEuler’s theorem, this graph contains an

Eulerian circuit.

O

Remark 4. For all minimal generating sets, ['(Q.S, S) does not contain an Eulerian
path, a Hamiltonian path, or a Hamiltonian circuit.
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4. GENERALIZED QUATERNION GROUP

Recall that the generalized quaternion group, Q2», has presentation (s, ¢ | 2 =

e,s2" " =12 tst™! = s71). Next we determine the existence of Eulerian and Hamil-
tonian circuits and paths.

Lemma 17. If G is the generalized quaternion group, then t* = e.

Proof. Let G be the generalized quaternion group. Recall that t? = s2 Squarmg
both sides,

(12 = S2"—2)2

=5 =e.

O

Lemma 18. Let G be the generalized quaternion group, then (ts?)? = t2 for all j.

Proof. We proceed with induction on j. Let j = 1, then (ts!)? = tsts = ts(s~'t) =
t2 and the theorem holds for j = 1. Assume that the theorem holds for j =k, i.e,
(tsF)? = 2.
Now let j = k + 1, then (tsFT1)2 = tshHltshtl = tshtltssh = tshtls=1sh =
tsktsk = (ts¥)? = t2. Therefore (ts/)? = t2 for all j.
O

Lemma 19. Let G be the generalized quaternion group, then (ts?) = {ts? t? t3s7 e}
for all j.

Lemma 20. If G is the generalized quaternion group and (ts’) # (ts*), then
(ts?)y N (ts*) = {2, e} and |(ts?) N (tsF)| = 2.

Theorem 21. If G is the generalized quaternion group, and S is a minimal gen-
erating set, then I'(G, S) contains an Eulerian circuit.

Proof. Let G be the generalized quaternion group and S be a minimal generating
set. Then, S = {s*,ts7} where k is odd or S = {ts* ts™}, where k is odd and m
is even.

case i) Let S = {sk ts’} where k is odd, then Si o = So1 = [(s*)N(ts?)| = 2 and

2
2n71 2n71 2n71 277,71 anl
d -1= -1= =2n2
sl (Z_: ) © Sia - S1,2 g1 3 2 ’
4 4 4 4
which is even. Similarly deg((ts’)) (Z |52 )— g—’_@_l = 14-5_1 =

2, which is even. This graph is K3 9n—2 and contains an Eulerian circuit.
case ii) Let S = {ts* ts™}, where k is odd and m is even, then Sy o = So1 =

4 4 4 4
ts®\n = 2 and deg( ts < (s >—1 =41 =
(e (2™ ol ZS et l= 3t
Co 4 4
2, which is even. Similarly deg((ts™ (Z 5 > —-1= 75 oo 1=
2,5 2,1 2,2

4 4
1 + 5~ 1 = 2, which is even. By applying Euler’s theorem, this graph contains an

Eulerian circuit.

O
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Remark 5. For all minimal generating sets, I'(Q2n, S) does not contain an Eulerian
path.

Theorem 22. If G is the generalized quaternion group, Qan, and S = {s* ts™}
where k is odd, then I'(G,S) contains a Hamiltonian circuit and a Hamiltonian
path for n = 3.

Proof. The vertex set of T'(Qgs, S) is V(I'(Qgs,S)) = {(s*), t(s¥), (ts™), t(ts™)} .
A Hamiltonian circuit is given by
(%Y, (ts™), t(s®), t(ts™), (s*).
A Hamiltonian path is given by
(sFY, (ts™), t(s®), t(ts™).
O

Theorem 23. If G is the generalized quaternion group, Qon, and S = {ts*, ts™},
where k is odd and m is even, then I'(G,S) contains a Hamiltonian circuit and a
Hamiltonian path.

Proof. The vertex set of T'(Q2n, S) is
V(T(Qan, S)) = {(ts"), s(ts®), - 52" ~Htsh), (5™, s(ts™), -+ 52 7L (ts™)}.
A Hamiltonian circuit is given by
(ts*), (ts™), sF 7 (tsF), P TT(Es™Y, o SHT RN m gy gh— @R Dm g gmy - (ygky
A Hamiltonian path is given by

(tsk), (ts™), s (tsk), sKmm (ts™), sFTEM (tskY | sKTEm (1™ L

sk—(?”"z—l)m<t8k>7 sk—(?“’Q—l)m<tSm>.

REFERENCES

[BJRTDO0S8] C. Bauer, C. Johnson, A. Rodriguez, B. Temple, J. Daniel Paths and Circuits in
G-Graphs, Involve 1 (2008), no. 2, 135-144.

[BGO4] A. Bretto, L. Gillibert Graphical and Computational Representation of Groups, Lect.
Notes in Comp. Sci. 3039 (2004), 343-350.

[BGLO5] A. Bretto, L. Gillibert, B. Laget Symmetric and Semisymmetric Graphs Construction
Using G-graphs, Proceedings of the 2005 international symposium on Symbolic and algebraic
computation (2005), 61-67.

[BG05] A. Bretto, L. Gillibert Symmetry and Connectivity in G-graphs Electronic Notes in Dis-
crete Mathematics 22 (2005), 481-486.

[BG07] A. Bretto, L. Gillibert G-graphs: a new representation of groups, J. Symbolic Comput.
42 (2007), no. 5, 549-560.

[D08] J. Daniel The G-Graph of a Group, to appear.

DEPARTMENT OF MATHEMATICS, LAMAR UNIVERSITY, BEAUMONT, TX 77710
E-mail address: aldewitt@my.lamar.edu

DEPARTMENT OF MATHEMATICS, LAMAR UNIVERSITY, BEAUMONT, TX 77710
E-mail address: amrodriguez1@my.lamar.edu

DEPARTMENT OF MATHEMATICS, LAMAR UNIVERSITY, BEAUMONT, TX 77710
E-mail address: Jennifer.Daniel@lamar.edu



