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THE RELATIONSHIPS BETWEEN CG, BFGS, AND TWO
LIMITED-MEMORY ALGORITHMS

ZHIWEI (TONY) QIN

ABSTRACT. For the solution of linear systems, the conjugate gradient (CG)
and BFGS are among the most popular and successful algorithms with their
respective advantages. The limited-memory methods have been developed
to combine the best of the two. We describe and examine CG, BFGS, and
two limited-memory methods (L-BFGS and VSCG) in the context of linear
systems. We focus on the relationships between each of the four algorithms,
and we present numerical results to illustrate those relationships.

1. INTRODUCTION

Systems of linear equations arise in such diverse areas as digital signal processing,
forecasting, and telecommunications. Hence solving linear systems in an efficient
and robust manner has significant scientific and social impact. Here, we are con-
cerned with finding the solution to

(1.1) Az = b,

where x € R", and A is an n xn symmetric positive definite matrix. In the past fifty
years, many numerical algorithms have been proposed to achieve this goal. Among
them, the most well-known and established are the conjugate gradient (CG) method
and the family of quasi-Newton (QN) methods. Although quasi-Newton methods
are normally thought of as nonlinear minimization algorithms, they can be used to
solve systems of linear equations by instead applying them to the quadratic problem
(1.2) min leAx —bvTx.
zER™

In this thesis, whenever the quasi-Newton family is conerned, we will focus on the
BFGS method, which has been proved most effective among all the Quasi-Newton
methods. The delicate relationship between CG and BFGS has been explored ex-
tensively in the past, and new limited-memory algorithms based on CG and BFGS
have been proposed to address the problem of large memory requirement for BFGS.
Two competing algorithms of this type are the L-BFGS method described by No-
cedal [8] and the variable storage conjugate gradient (VSCG) method published by
Buckley and LeNir [2]. In this thesis, we describe, in the context of linear systems,
the CG, BFGS, and the limited-memory methods with a unified approach empha-
sizing the relationships between each of them. We compare their performances on
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test matrices, in particular, highly ill-conditioned matrices, and we present the re-
sults of numerical experiments. We close with some recommendations on when to
use the respective algorithms.

2. NOTATION

In this thesis, lower-case roman letters denote column vectors, and upper-case
letters denote matrices. Greek letters are reserved for scalars. In the context of
preconditioned CG (PCG), we use Hj for the inverse of the preconditioner M, and
Hj, for the updated matrix based on Hy at iteration k. In the context of BFGS,
Hj. denotes the k-th approximation to the inverse of the Hessian matrix. For both
CG and BFGS at iteration k, xj denotes the current approximate solution, and dy,
is the search direction. We write

gk = Vf(zr),
Ye+1 = Gk+1 — Gk,
Sk+1 = T41 — T = ouedy,
where oy, is the step length determined by exact line-search as

T

ngogk
2.1 — 9709k
2.1) = AT Ady

We will see later on why we use the same letters for CG and BFGS. The function
U(Hg, Yr+1, Sk+1) will be used to represent the BFGS update formula for Hy, i.e.

(2.H k1 = U(Hk, Ykt1, Sk+1)
Sk+1Yis1He + Heyks15E 4 Vo1 Heyrs | Sk+1544q
+ 1+ A e .
Skr1Yk+1 Skt1Yk+1

(2.3) = H,— =
Skr1¥Yk+1

3. THE CONJUGATE GRADIENT METHOD

The linear Conjugate Gradient method was first introduced by Hestenes and
Stiefel [5]. Here we present the most standard form.

Algorithm 3.1. CG (]9, Algorithm 5.2])
Initialization zq, g9 = Axg — b, dy = —go, k=0
while not converged

oy — k9
dT Ady
Tyl = Tk + opdy
gk+1 = gk + arAdy
91:54.19/@'-&-1
Br+1 = —F—
9i 9k
diy1 = —grt1 + Bryrdr
k=k+1

end

The following theorem for linear CG will be useful later on and can be found in
many textbooks, such as [9].
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Theorem 3.1. For linear CG at iteration k, suppose xy, is not yet the solution of
(1.1), the following properties hold:

(31) ggglzo fOTZ:Oavk_17

(3.2) dFAd; =0 fori=0,---,k—1.

In addition, with exact line-search (2.1), we have

(3.3) grd; =0 fori=0,--- k—1.
Since a;d; = s;41, it follows that

(3.4) gFsip1=0.

CG is often employed with the preconditioner M to improve its performance,
especially on ill-conditioned matrices. PCG simply transforms the original linear
system that CG solves by a change of variable, & = Rz, where M = RTR. Now
instead of solving Az = b, we solve the new system

(RTAR Y2 =R Tp

with the hope that R~ AR™! has better eigenvalue distribution than A. In prac-
tice, the preconditioner often comes in the form of M = RT R, which is symmetric
positive definite, and so is its inverse Hy. Equation (3.1) in the theorem above thus
becomes

(3.5) gFHogi =0 fori=0,--- ,k—1.

In the algorithm we present here, we actually use H, instead of M to ease the
comparison with BFGS. Of course, Hy = M when M = I, and PCG reduces to the
standard CG method.

Algorithm 3.2. PCG ([9, Algorithm 5.3])
Initialization z(, preconditioner Hy, g9 = Axg—b, dy = —Hpgo, k=10
while not converged

gt Hogr
T I Ad
k k
Tht1 = Tk + apdy
Jk+1 = Gk + apAdy
3 . 91€+1H09k+1
bl = —
* gt Hogr
i1 = —Hogr1 + Bry1di
k=k+1

end

We can see that the only differences between PCG and CG are the initial search
direction dy and the “correction coefficient” [ry1. We also note that linear PCG
in this form is exactly same as the preconditioned Fletcher-Reeves nonlinear CG
(FR-CG) method [3], except that FR-CG requires a line-search for computing a.
However, when applied on a quadratic function, we can assume that all line-searches
are exact, and we keep this assumption for the remaining parts of this thesis unless
otherwise specified. There are many other forms of the nonlinear CG method,
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which differ from FR-CG only on the choice of B;y1. The Hestenes-Stiefel form
(HS-CQG) [5] with a preconditioner Hy defines

(3.6) s _ 91 Hoyrs
k+1 y]zi,rldk

Here, we show that HS-CG is equivalent to FR-CG on quadratic functions. First,
recall that

(3.7) dps1 = —Hogry1 + B dr, for each k.
Hence,

gk di = —gi Hogr + Bt "gi dr—1
—ngH09k~

Now

ws GheiHo(gks1 — gr)
M (gkgr — gk)Td
G Hoges
- —gldy
_ GiraHog™t!
gt Hogr
= Brt1s

which by Algorithm 3.2, we have

51?-?1 = ﬂk+1-
Let us consider HS-CG. If
skyf Ho

Qr = Ho —
Sfyk

then

dp+1 = —Hogr41 + <

T
Iir1HoYk+1

= —Hogrs1 + | o—— ) sp41
Yk415k+1

91 Hoyrks
T d
Yi19k

Sk+1Yp 41 Ho
3£+1yk+1
= —Qk+19k+1
dr = —QrYk-

Note that Qy, is not symmetric positive definite in most cases. Shanno [11] suggested
that we can augment/pad Qy to get

= —(Ho — )Grk+1

T T T T
sxyr Ho + Hoygs H, SkS
(3.8) Hy = Hy — EYk oT 0Yk S + <1+ ykToyk> ; b
SE Yk Sk Yk Sk Yk
so that Hj, is symmetric positive definite. By definition of the function U in (2.2)
and (2.3),

(3.9) Hy°% = U(Ho, Y, sk.)-
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Buckley and LeNir [2] claim that —Qrgr and —Hy gy, generate the identical search
directions. We give the detailed derivation here. With exact line-search and (3.4),
we have

T T T T
S Hy+ H S H SkS
E[k " F[O . ( kY 110 0YkSk ) i <1 Yk Oyk) kS

Sfyk Sfyk s{yk
_ skyt Hoge  Hoyrst gn
- ng - T - T
SLYk Sk Yk
ak—1di—1y} Hogr
= H()gk? - ! T k
ak—ldkflyk
T
Y Hogr
= Hogr, — dp—1 | r—r
d_1Yk
T
9k Hyys,
= Hogr — <> dr—1
ygdkfl
= —dy.
Therefore,
Qrgr = Higr,

which means that we did not change anything by replacing Q with Hy. So far, we
have established that the PCG search direction can be written in the QN-like form
dr = —Hygx.

Moreover,
TH H. T TH T
Hy, = Hog — Sk 0T+ 0Yk Sk g+ (14 ykToyk S;Sk
Sk Yk S Yk S Yk
— ", seyi Ho  Hoywsy, | sk(ys Hoyk)si | swsi
Sfyk Sfyk ||3£yk||2 ykTSk
B SKYUL Yest\ | skst
= (122 ) gy (1 L2k ) 4 2R0k
Sk Yk Sk Yk Yi. Sk
Thus,
(3.10) H;, = VkTH()Vk + pksksg,

where V, = I — pkyks{, and pi = y{%k This expression is used in the L-BFGS

update later on.

4. THE BFGS METHOD

The BFGS method has proved the most effective among all quasi-Newton algo-
rithms [9]. The essence of BFGS can be summarized by a rank-two update on the



10 ZHIWEI (TONY) QIN

approximate Hessian matrix By as follows:

T T
Yk+1Yg+1  BrSk+15541 Bk

Bri1 = Bi + -
T T
Yt 15k+1 Spy1BrSk+1
Ye+1VUii1 . BrSit1Sp, 1 Be
= By + — T
Ypi1Skt1  —(Spo1Br)ser
T T
Yk+1Y, oy Brdyardy, By
= By + o kol T k because Brdr = —gx
Yy 15k+1 kg kd

T T

Ye+1Y64+1 | Gk
T T

Ypr15k+1 G dk

= By +

By applying twice a special case of the Sherman-Morrison-Woodbury formula [4],

(4.1) (A—wT) P =A"1 +ad T A,

where o = (1 —vTA71u)~1, and u and v are column vectors, it can be shown that
the approximate inverse Hessian satisfies

-1
Hyp1 = B,y

Skt 1Yy 1 Hie + Heyrg15t 4 Y1 Heyks1 \ Sk+15144
= Hy — T T\t =7 T
Sk+1Yk+1 Sk+1Yk+1 Sk+1Yk+1
(4.2) = Vi HiVis + praskaisign by (3.10)]

= U(Hg, Yrt1, Sk+1)
(4.HET = U(Hg—1, Yk, Sk)-

By comparing the expressions for HZ¢ (3.9) and HPF® (4.3), it is clear that
PCG is really a special case of BFGS in which a fixed matrix Hy is updated at
each iteration. Since BFGS stores at each iteration the approximate inverse Hes-
sian matrix H7*9® which is usually dense while PCG does not, PCG can thus be
interpreted as the memory-less version of BFGS.

For implementation purpose, we follow the standard algorithm that makes use
of the approximate Hessian matrix By as it allows us to update By by two rank-one
updates to its Cholesky factor Ry [10]. Hence we just need to store Ry instead of
By, saving half amount of memory.

Algorithm 4.1. BFGS (on the quadratic function in (1.2))
Initialization o, By, go = Azg—b, k=0
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while not converged

Solve Bpdy = —gi for d
_ ghdk
dT Ady,

Sp+1 = opdg

Qp =

Th4+1 = Tk + Sk+1

Yet1 = ASpt1

Jk+1 = Gk + Yk41

Ykt 1Yhs1 | GkIE

Byi1 = By +
yl{+13k+1 ggdk

k=k+1
end

As mentioned before, we use Ry instead of By in practice. The rank-two update

to By is accomplished through a rank-one update of (y’““) to Ry, followed

V yl?+1sk+1
by a rank-one downdate of <&CM> to Ry, the updated Ry, i.e.

yk+lyg+1 gkg,f

Bii1 = B +
ylz+15k+1 9p di
T
Yk+1 Yk+1
(4.4) Rl B = BB+ | e | | - —
' Yi+15k+1 Yr+15k+1
T
9k gk
9% di| g% di|

The minus sign in (4.4) is because g dy < 0 as shown below:
gk = —Bydk
gi = —di By,
ggdk = 7d£Bkdk.

Since By, is symmetric positive definite, —d{Bkdk < 0.

5. THE RELATIONSHIP BETWEEN CG AND BFGS ON QUADRATIC FUNCTIONS

In the previous sections, we established the general relationship that PCG is a
special case of BFGS. In fact, we can further strengthen this relationship in the
context of linear systems, i.e. on quadratic functions.

Lemma 5.1. When the PCG and BFGS algorithms are applied to the quadratic
function (1.2) using the same starting point xo and initial symmetric positive defi-
nite matriz Hy, then

(5.1) d§¢ =dPFes, j=1,2,--- n.
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The detailed proof was given by Nazareth [7]. While we will not repeat the major
part of his proof here, we would like to provide the proof by induction that

(52) H]BFGSg]CZHogk, 0S]<k‘§n

for which he omitted the details.

Proof. When j =0,

Hy" gy, = Hogk.
Now, assume that

HPYS g = Hogr,

so that
(5.3)

T T T T
s;jy; Hi—y + Hj_1y,s; H Sk+1S
HP" g, = Hj 19k — L R R gk + (1 + Yt kyk“) kL,

T T T
55 Y5 Sk41Yk+1 Sk+1Yk+1
In addition,

vl H gk = (95 — 9j-1) " H i
= giHj-19x — gj—1Hj-19k
= gjHogr — gj—1Hogx
(5.4) —0 [by (35)].

Applying (5.4) and (3.4) to (5.3), we get

HP" g = HPX gk = Hogr.

This equivalence relation is further extended by Buckley in [1].

6. LIMITED-MEMORY METHODS BASED ON PCG AND BFGS

Before we talk about the limited-memory methods, it is probably sensible to
consider the memory requirements for PCG and BFGS. For PCG, we need to store
only several n-vectors, hence the storage requirement is O(n). For BFGS, we have
to save Hj, or the Cholesky factor Ry of By, which accounts for an O(n?) memory
requirement.

The limited-memory methods are designed for the situation where the amount
of available storage is not enough for BFGS, but exceeds the requirement for PCG.
The motivation is that by utilizing more memory than PCG, we expect to achieve
performance that is superior to PCG, though inferior to BFGS.

Both of the limited-memory methods we consider here have an input parameter
m, which specifies the number of stored vector pairs for the L-BFGS method and
the number of BFGS iterations for each invocation of the Quasi-Newton phase in
the VSCG algorithm.
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6.1. The L-BFGS method. The L-BFGS method was developed by Nocedal [8]
based on the fact that we can construct Hp"“® from H, by applying k times the
updates with the vector pairs (y;,s;),j =1, -, k. We can easily deduce this fact
from the recursive relation for in HZ"® (4.3).

Moreover, we need not compute H;¥%® explicitly, but we instead compute Hygs.
This can be accomplished by the two-loop recursion described by Nocedal (see [§],
and [9, Algorithm 9.1]).

In L-BFGS, we store the m most recent pairs of (y;, s;). When the storage limit
is reached, we discard the oldest vector pair before saving the newest one, i.e., we
keep ((Yks5k)s (Yk—1,5k—1), s (Yk—m+1,Sk—m+1)). For computing Hygy, we use
the two-loop recursion. The two-loop recursion is based on the expression (4.2).
We can repeatedly apply (4.2) in the L-BFGS context and we have

HEFSS = (VkT . VkT,mH)H,S(Vk_mH Vi)
+ prempr (Vi -+ VkT—m+2)5k—m+15£_m+1(Vk_m+2 < Vi)

(6.1) + pk-mi2 (Vi Vilinis)sk-m+28h—mya(Viemta -+~ Vi)

T
+ PkSKESK

which forms the basis of the two-loop recursion. The formal L-BFGS algorithm
that we have implemented can be found in [9, Algorithm 9.2].

PCG can be understood as a special case of BFGS, hence it is not surprising
that PCG can be interpreted as a special case of L-BFGS as well. Indeed, from
(3.9), we can reconstruct H¢ from Hy by an update with (yg, sk). As a result, we
can interpret PCG as L-BFGS with m = 1 and H = Hy (i.e. the initial matrix of
each Quasi-Newton phase is set to Hp). By similar reasoning, we see that BFGS
is, in fact, L-BFGS with m = co and HY = Hy.

6.2. The VSCG method. With the relationship between PCG and BFGS firmly
established, we are now ready to consider the VSCG method, which was proposed
by Buckley and LeNir [2]. The VSCG algorithm combines cycles of BFGS with
CG iterations in an intelligent manner. The basic reasoning is that the symmetric
positive definite Hy from BFGS approximates the inverse of the Hessian, which
is just A=1 if f(z) is the quadratic function in (1.2) So it is reasonable to apply
H,,,, which is generated by m iterations of BFGS, as the preconditioner to CG so
as to improve the performance of CG. When the BFGS iterations are invoked is

determined by a CG restart criterion. Here, we present the basic algorithm for
VSCG.

Algorithm 6.1. VSCG
Initialization zq, go = V f(x0),do = —Hogo
while not converged
BFGS-part: Choose/reset initial matrix HY to be s.p.d. Hy.
fori=1,--- ,m—1,m

H; = U(Hi-1,5i,Yi)
= —H;g;

Tit1 = T + oud;

&
|
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end (for)

CG-part: Continue from x,, 1, use H,, as the preconditioner
for i =m+41,m+4 2,--- until a restart is necessary

H; = U(Hp, 56, :)
di = —H,g;

Tip1 = @ + ad;

end (for)
end (while)

In VSCG, although m denotes the number of iterations allowed for each invo-
cation of the BFGS-part, it in fact carries the same meaning as that in L-BFGS.
Since the preconditioner H,, is constructed from the m (s;,y;) pairs, we have to
store them for the CG-part. In other words, m is the number of vector pairs saved.

It turns out that VSCG is related to CG and BFGS in the same way as L-
BFGS. Intuitively, this is not surprising since the parameter m in both algorithms
represents the same thing. When m = 1, VSCG reduces to Beale’s recurrence
with padding [2]. (Recall that with exact line-search, padding does not affect the
search directions generated.) Now, Beale’s recurrence is in turn equivalent to PCG
on quadratic functions with exact line-search [2]. When m = oo, obviously the
CG-part of VSCG will never be executed, hence VSCG is just BFGS.

On quadratic functions, as we have discussed in the previous section, PCG and
BFGS are equivalent. Therefore, it follows that L-BFGS and VSCG are also equiv-
alent to PCG and BFGS on quadratics. We will make that observation in the next
section.

The storage requirements for L-BFGS and VSCG are both O(mn) since both
algorithms require storing m n-vector pairs.

6.3. Implementation issues. One issue regarding the VSCG implementation
that is worth discussing is the way we store and discard the (y;, s;) vector pairs.
The original approach adopted by Buckley and LeNir is to discard all m vector pairs
at the first step of each run of the BFGS part, i.e. resetting the preconditioner to
Hjy, and then start afresh. In the numerical results that we present in the next
section, we will use VSCG2 to represent the implementation with this approach.
We have also tried to adopt the L-BFGS strategy by discarding only the oldest
vector pair (and add in the newest one) at each restart of CG. Test experience
showed that this approach is almost the same as the original one. Intuitively, that
makes sense because after m BFGS iterations, all the m old vector pair would have
been discarded, and therefore their effect is the preconditioner H,, which is to be
applied to the CG-part. We will not show the numerical results for this approach.
In a personal communication, Friedlander suggested to keep the diagonal of H,,
before discarding all the m vector pairs at a new restart and then proceed as the
original approach with Hy being a diagonal matrix whose diagonal is that of the
previous H,,. The rationale behind is that the diagonal of H,, contains the most
information of the matrix. We represent the implementation with this strategy as

VSCG4.
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VSCG requires a restart criterion for the CG-part of the algorithm. Buckley and
LeNir [2] proposed to use

TH. g
(6.2) 7= i Zmlicl
gi—1Hmgi—1

However, 7 is always 0 on quadratic functions by (3.5), hence (6.2) is not applicable
to linear problems. In our implementation, we invoke the BFGS-part whenever the
number of iterations is a multiple of n.

In our VSCG implementation, we also use the L-BFGS two-loop recursion to
compute Hyg for simplicity, although Buckley and LeNir [2] described a slightly
different way to do that.

Since the initial matrix Hy is usually diagonal, we simply use a vector to represent
Hj so that Hyq is just the result of an element-wise multiplication of Hy and ¢. In
our implementations of all the algorithms under consideration, Hy is always set to
the identity matrix.

7. NUMERICAL RESULTS

7.1. Explanation of set-up. Our implementations of the algorithms are in MAT-
LAB. The source code is available upon request. The algorithms are tested over
30 test matrices from Matriz Market [6], and their performances, i.e. number of
iterations for convergence, are reflected in the table and graphs. We classify the
test matrices by their condition numbers according to the following table:

category condition number
extremely ill-conditioned > 1010

highly ill-conditioned 107 — 10°
moderately ill-conditioned 10* — 10°
well-conditioned < 10°

The information for the test matrices can be found in Appendix A or in the source
file loadTestMatrices.m.

The table of results is organized as follows: The first column contains the indices
of the test matrices. The second and last columns contain the results for PCG and
BFGS respectively. The remaining columns show the results for the limited-memory
methods with different values of m.

Each test matrix occupies three rows, which corresponds to L-BFGS, VSCG2,
and VSCG4 in that order. The results for PCG and BFGS are put in each row to
server as benchmarks.

The values of m are not set to specific numbers. Instead, percentages are used to
reflect the amount of storage allowed relative to the total size of the matrix. When
m is at 100%, it is set to the value I = min(n,200). Similarly at 10%, for example,
m = 1/10.

7.2. Table and graphs.

7.3. Observations. In the previous sections, we have established that PCG, BFGS,
L-BFGS, and VSCG are all equivalent on quadratic functions with exact line-search.
We can see from the numerical results that this is true provided that the matrix in
problem is well-conditioned (e.g. matrices 2,7 in Figure 1). So, PCG should be the
first choice for solving well-conditioned linear systems.
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TABLE 1. Numerical results
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Mat PCG m=1 m=20% m=40% m=60% m=80% m=100%BFGS Condition Num. Size

1 564 555 554 526 341 202 128 128 5.60E+06 132 x 132, 1890 entries

1 564 1498 1132 1034 132 128 128 128

1 564 686 566 430 132 128 128 128

2 34 34 34 34 34 34 34 34 3.80E+02 900 x 900, 4322 entries

2 34 34 34 34 34 34 34 34

2 34 34 34 34 34 34 34 34

3 673 629 606 555 465 264 109 109 9.50E+06 112 x 112, 376 entries

3; 673 2388 1862 1081 411 113 108 1.09

3 673 1093 609 442 278 161 109 109

4 1044 1013 1026 1003 826 484 189 189 8.00E+06 675 x 675, 1965 entries

4 1044 1027 994 565 407 198 189 189

4 1044 1027 1222 555 407 198 189 189

5 3664 3594 3026 1377 985 1075 915 428 4.10E+09 729 x 729, 2673 entries

5 3664 5000 2663 492 513 487 485 428

5 3664 5000 5000 492 513 487 485 428

6 5000 5000 5000 5000 5000 5000 5000 1393 1.30E+10 1806 x 1806, 32630 entries
6 5000 5000 5000 5000 5000 5000 5000 1393

6 5000 5000 5000 5000 5000 5000 5000 1393

11 469 488 362 239 189 134 134 196 2.30E+05 817 x 817, 817 entries

11 469 488 201 153 134 134 134 196

11 469 488 201 153 134 134 134 196

12 279 283 207 154 102 102 102 157 2.60E+05 485 x 485, 485 entries

12 279 283 134 102 102 102 102 157

12 279 283 134 102 102 102 102 157

13 e 3 4 4 4 4 4 4 24 3600 x 3600, 3600 entries
13 3 3 4 4 4 4 4 4

L& B 3 4 4 4 4 4 4

14 50 54 151 58 53 53 53 54 9.40E+02 138 x 138, 138 entries

14 50 54 54 58 53 58 53 57

14 50 54 54 53 53 53 53 57

15 5000 5000 5000 5000 4662 4473 4317 1584 9.50E+08 3134 x 3134, 3134 entries
15 5000 5000 5000 4205 3770 3612 3430 1584

L5 5000 5000 5000 5000 4247 3831 3347 1584

16 5000 5000 5000 5000 5000 5000 5000 2276 1.80E+13 3562 x 3562, 3562 entries

16 5000 5000 5000 5000 5000 5000 4412 2276
16 5000 5000 5000 5000 5000 5000 5000 2276

18 909 901 900 870 825 772 733 527 7.70E+04 1224 x 1224, 28675 entries
18 909 901 825 720 642 603 576 527

18 909 901 825 720 642 603 576 527

19 2085 2094 2706 2899 2767 2584 2484 1147 2.60E+05 1922 = 1922, 1922 entries
1.9 2085 2133 1765 1598 1443 1320 1179 1147

1.3 2085 2133 1765 1598 1443 1320 1179 1147

20 5000 5000 5000 5000 5000 5000 5000 2385 3.21E+06 5489 x 5489, 143300 entries
20 5000 5000 5000 5000 5000 5000 5000 2385

20 5000 5000 5000 5000 5000 5000 5000 2385

29 2250 2154 2130 1942 560 415 198 198 2.50E+07 237 x 237, 627 entries

29 2250 5000 5000 937 859 198 198 198

29 2250 5000 5000 659 386 198 198 198

30 5000 5000 5000 5000 5000 5000 5000 798 6.30E+09 957 x 957, 2547 entries
30 5000 5000 5000 5000 5000 5000 5000 798

30 5000 5000 5000 5000 5000 5000 5000 798

3. 231 251 231 231 230 227 223 223 7.30E+04 960 x 960, 8402 entries
Bl 231 231 228 226 223 223 223 223

3. 231 231 229 226 223 223 223 223

3% 76 76 77 91 78 76 76 76 2.70E+03 100 x 100, 347 entries

3z 76 76 76 76 76 76 76 76

32 76 76 76 76 76 76 76 76

33 428 429 426 422 416 412 403 312 2.90E+04 468 x 468, 2820 entries
33 428 429 409 401 392 382 379 372

33 428 429 409 401 392 382 379 372

34 1044 1013 1026 1003 826 484 189 189 8.00E+06 675 x 675, 1965 entries
34 1044 1027 994 555 407 198 189 189

34 1044 1027 1222 555 407 198 189 189

35 3664 3594 3026 1377 985 1075 915 428 4.10E+09 729 x 729, 2673 entries
35 3664 5000 2663 492 513 487 485 428

35 3664 5000 5000 492 513 487 485 428

On ill-conditioned matrices, however, there is significant difference in the per-
formance of PCG and BFGS. The gap widens as the matrix becomes more ill-
conditioned and larger in size. The performance of the limited-memory methods
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resembles that in the nonlinear case; as the value of m increases, the number of
iterations decreases until it reaches the level of BFGS.

The number of iterations for L-BFGS with m = 1 is identical or close to PCG
as expected, but in many test cases (e.g. matrices 3,5 in Figure 1, and 29 in Figure
2), that is not true for VSCG2 and VSCG4. Here, we attempt to provide a possible
explanation. As we mentioned in the previous section, the equivalence of VSCG
with m = 1 and PCG on quadratic functions relies on the equivalence of Beale’s
recurrence and PCG. Buckley and LeNir [2] established the second equivalence by
showing that on quadratics,

(7.1) 9f Hyyi = g] Hoys, j > 0,i> j
which reduces to
(7.2) Higi = Hogi, 1>

Here, H;g; comes from PCG, and Hyg; comes from Beale’s recurrence. We recall
that the equivalence of PCG and BFGS on quadratics is based on the same result
(5.2), but we just observed that PCG requires much more iterations than BFGS
does to reach convergence on ill-conditioned matrices. That should explain why
VSCG with m = 1 performs not as well as PCG. As such, if the linear system is
highly ill-conditioned and the amount of storage is very limited, we recommend
using L-BFGS to solve the problems.

250
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It is worthwhile to note that when m reaches the 40% level, VSCG4 almost never
perform worse than L-BFGS, and in some cases (e.g. matrices 4,5 in Figure 1, and
34 in Figure 2), the superiority is significant. The performances of VSCG2 and
VSCG4 are generally identical, but VSCG4 shows superiority in several cases (e.g.
matrix 1,3 in Figure 1).

Our final observation is that BFGS shows the most robustness on very large
and extremely ill-conditioned matrices (e.g. matrix 20,30 in Figure 2). In those
cases, all the other three methods fail to converge within 5000 iterations, but BEGS
succeeds.

8. CONCLUSION

We have described PCG, BFGS, and the limited-memory methods in the context
of linear systems, and we have also streamlined the relationships between each of
the algorithms. The numerical results that we have presented demonstrate that
CG is the best choice for well-conditioned problems because of its low memory
requirement. On large, highly ill-conditioned problems, BFGS may be our only
choice. Nevertheless, on moderately ill-conditioned problems with moderate sizes,
we may be able to take advantage of the limited-memory algorithms, depending on
the amount of storage we have available.
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