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ON THE NONEXISTENCE OF SINGULAR EQUILIBRIA IN THE
FOUR-VORTEX PROBLEM

MARSHALL HAMPTON, ANDREA PETERSON, HEATHER STOLLER, AND ALBERT
WANG

Abstract. In this paper we provide a partial answer to a question recently

posed by Hassan Aref et. al. in their article Vortex Crystals, namely whether
there are certain singular equilibria of point vortices. We prove that there are

no such equilibria in the four-vortex case.

1. Introduction

The starting point of our discussion is the set of point-vortex equations for N
interacting vortices a = 1, 2, . . . , N with circulations Γa and (complex) positions zi:

dzi

dt
=

1
2πi

∑
j 6=i

Γj

zi − zj
.

This system was introduced by Helmholtz [H] to model a two-dimensional slice of
columnar vortex filaments, with some refinements by Lord Kelvin [T] and Kirchhoff
[K]. An extensive bibliography on the subject can be found in [N]. It is worth
noting that this system can be written in Hamiltonian form with Hamiltonian
H =

∑
i<j ΓiΓj log |zi − zj |, where the symplectic pairs of variables are multiples

of the real and imaginary parts of each zi.
A vortex equilibrium is a configuration of vortices such that dzj

dt = 0 for all j.
We are concerned here with the following special type of vortex equilibrium:

Definition 1.1. A singular equilibrium is an equilibrium such that L =
∑

i<j ΓiΓj |zi−
zj |2 = 0, K =

∑
i<j ΓiΓj = 0, and S =

∑
i Γi 6= 0.

It is already known that there are no singular equilibria in the three-vortex
problem [ANST], where it is also shown that a rigidly rotating configuration of
vortices has an angular speed of ω = SK

4πL . Our introduction of the term singular
equilibrium refers to the indeterminancy of this expression for the angular speed.

2. Nonexistence of the four-vortex singular equilibria

We will prove the following theorem:

Theorem 2.1. There are no four-vortex singular equilibria.
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Proof. Our calculations can be greatly simplified by a few assumptions. Since
setting z3 = 0 and z4 = 1 simply scales the relative distances between the vortices
and setting Γ4 = 1 scales the circulations, we can work under these conventions
without loss of generality. From the point-vortex equations, O’Neil [O] gives the
two solutions for four-vortex equilibria:

z1 =
2 + Γ2 ± i

√
3Γ2

2(1 + Γ2 + Γ3)

and

z2 =
2 + Γ1 ∓ i

√
3Γ1

2(1 + Γ1 + Γ3)
.

We can use the relation K =
∑

i<j ΓiΓj = 0 to eliminate Γ3 from these equations:

Γ3 =
Γ1 + Γ2 + Γ1 Γ2

1 + Γ1 + Γ2
.

Note that we cannot have 1+Γ1 +Γ2 = 0 since then K reduces to −(1+Γ2 +Γ2
2)

which cannot be zero for real vorticities.
This gives us

z1 =
(2 + Γ2)(1 + Γ1 + Γ2) + i

√
3Γ2(1 + Γ1 + Γ2)

2(1 + Γ2 + Γ2
2)

and

z2 =
(2 + Γ1)(1 + Γ1 + Γ2) + i

√
3Γ1(1 + Γ1 + Γ2)

2(1 + Γ1 + Γ2
1)

for the positions of the first two vortices in a singular equilibrium.
Now we can use these expressions for z1 and z2, along with our conventions

z3 = 0 and z4 = 1 to find the squared distances d2
ij = |zi − zj |2:

d2
12 =

(Γ2
1 + Γ1Γ2 + Γ2

2)(1 + Γ1 + Γ2)2)
(1 + Γ1 + Γ2

1)(1 + Γ2 + Γ2
2)

d2
13 =

Γ2
1 + Γ1Γ2 + Γ2

2

1 + Γ2 + Γ2
2

d2
14 =

(1 + Γ1 + Γ2)2

1 + Γ2 + Γ2
2

d2
23 =

Γ2
1 + Γ1Γ2 + Γ2

2

1 + Γ1 + Γ2
1

d2
24 =

(1 + Γ1 + Γ2)2

1 + Γ1 + Γ2
1

d2
34 = 1.

Now we substitute these expressions in to the original equation for L.

L =3(Γ2
1 + Γ3

1 + Γ4
1 + Γ1Γ2 + Γ2

1Γ2 + Γ3
1Γ2 + Γ4

1Γ2 + Γ2
2 + Γ1Γ2

2 + Γ3
1Γ

2
2 + Γ4

1Γ
2
2 + Γ3

2+

Γ1Γ3
2 + Γ2

1Γ
3
2 + Γ3

1Γ
3
2 + Γ4

2 + Γ1Γ4
2 + Γ2

1Γ
4
2)/((1 + Γ1 + Γ2

1)(1 + Γ2 + Γ2
2)).
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The expression in the denominator is always positive. Now all that remains is
to determine the sign of the numerator in parentheses, N(Γ1,Γ2). If it is always
positive on R2 − (0, 0) we will have proven our claim, namely that there are no
four-vortex stationary equilibria with L = 0. We start with a lemma:

Lemma 2.2. ∂2N
∂Γ2

1
and ∂2N

∂Γ2
2

are non-negative.

Proof. Since N is symmetric in Γ1 and Γ2 it suffices the prove the lemma for ∂2N
∂Γ2

1
.

This is a quadratic function of Γ1, whose minimum (for a fixed Γ2) is

(1 + Γ2)2(5 + 2Γ2
2 + 5Γ4

2)
8(1 + Γ2 + Γ2

2)
≥ 0.

This lemma implies that ∂N
∂Γ1

and ∂N
∂Γ2

are monotone functions of Γ1 and Γ2

respectively. Thus they have at most one zero for each fixed Γ2 (for ∂N
∂Γ1

) and Γ1

(for ∂N
∂Γ2

).
We need a further lemma to reach our goal:

Lemma 2.3. For each fixed Γ2, ∂N
∂Γ1

has its unique zero between Γ1 = Γ2 and
Γ1 = −Γ2.

Proof. We simply compute that

∂N

∂Γ1
(Γ2,Γ2) = Γ2(3 + 6Γ2 + 8Γ2

2 + 10Γ3
2 + 9Γ9

2).

Using Sturm’s theorem it is not hard to show that the above polynomial is always
positive for Γ2 > 0 and always negative for Γ2 < 0. Likewise, from the calculation

∂N

∂Γ1
(−Γ2,Γ2) = −Γ2(1 + 2Γ2 + 2Γ3

2 + 3Γ9
2)

we can find that ∂N
∂Γ1

(−Γ2,Γ2) is always negative for Γ2 > 0 and positive for Γ2 < 0.
Combined with the monotonicity of ∂N

∂Γ1
as a function of Γ1 this completes the

lemma.

Since N is symmetric, ∂N
∂Γ1

(Γ1,Γ2) = ∂N
∂Γ2

(Γ2,Γ1). Lemma 2.3 then implies that
the gradient of N can only be zero at the origin, since otherwise the two partials can
only vanish in the disjoint open cones bounded by the lines Γ1 = Γ2 and Γ1 = −Γ2.
Thus the origin is the only critical point of N. It is elementary to compute that the
origin is a minimum of N , and thus the unique global minimum.

3. Conclusion

The nonexistence of singlar equilibria in the three- and four-vortex problems
naturally prompts the question of whether such an equilibrium can exist for a
larger number of vortices. It seems quite possible that there is a more general
argument which would show the nonexistence of singular equilibria for any number
of vortices, but we are unaware of a strategy for conducting such a proof.
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